K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11

a; (\(x+1\))(\(x^2\) - 4) = 0

      \(\left[{}\begin{matrix}x+1=0\\x^2-4=0\end{matrix}\right.\)

      \(\left[{}\begin{matrix}x=-1\\x^{ }=-2\\x=2\end{matrix}\right.\)

       Vậy \(x\in\) {-1; -2; 2}

b; (\(x\) - 2).(\(x^2\) + 1) = 0

    Vì \(x^2\) ≥ 0 ∀ \(x\)\(x\)2 + 1 ≥ 1 > 0 ∀ \(x\)

 ⇒ \(x-2\) = 0 ⇒ \(x\) = 2

Vậy \(x=2\)

c; 13.(\(x-5\)) = - 169

          \(x-5\) = 169 : 13

           \(x-5\) = -13

           \(x=-13+5\)

Vậy \(x=-8\)

d; \(x.\left(x-2\right)\) = 0

        \(\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

         \(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

     Vậy \(x\in\) {0; 2}

 

13 tháng 3 2021

Bài 1:

Thuật toán:

B1: Nhập a,b,c

B2: Tính \(\Delta\) = b2-4ac;

B3: Kiểm tra nếu  \(\Delta\) >0 phương trình có 2 nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}\text{ }}{2a}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}\)

B4: Kiểm tra nếu \(\Delta\)<0 thì phương trình vô nghiệm

B5: Kiểm tra nếu \(\Delta\)=0 phương trình có 2 nghiệm kép \(x_1=x_2=-\dfrac{b}{2a}\)

Viết chương trình:

Program HOC24;

var a,b,c: integer;

x1,x2: real;

denta: longint;

begin

write('Nhap a; b; c: '); readln(a,b,c);

denta:=b*b-4*a*c;

if denta>0 then 

begin

write('x1= ',(-b+sqrt(denta))/(2*a):1:2);

write('x2= ',(-b-sqrt(denta))/(2*a):1:2);

end;

if denta<0 then write('Phuong trinh vo nghiem');

if denta=0 then write('x= ',-b/2*a:1:2);

readln

end.

13 tháng 3 2021

Bài 2:

Thuật toán:

B1: Nhập a,b

B2: Kiểm tra nếu a=0 và b=0 thì phương trình có vô số nghiệm

B3: Kiểm tra nếu a=0 thì phương trình vô nghiệm

B4: Kiểm tra nếu a khác 0 thì có nghiệm x=-b/a;

Viết chương trình:

Program HOC24;

var a,b: integer;

x: real;

begin

write('Nhap a; b: '); readln(a,b);

if a=0 and b=0 then write('Phuong trinh co vo so nghiem');

if a=0 then write('Phuong trinh vo nghiem');

if a<>0 then write('x=',-b/a:1:2);

readln

end.

3:

a: u+v=14 và uv=40

=>u,v là nghiệm của pt là x^2-14x+40=0

=>x=4 hoặc x=10

=>(u,v)=(4;10) hoặc (u,v)=(10;4)

b: u+v=-7 và uv=12

=>u,v là các nghiệm của pt:

x^2+7x+12=0

=>x=-3 hoặc x=-4

=>(u,v)=(-3;-4) hoặc (u,v)=(-4;-3)

c; u+v=-5 và uv=-24

=>u,v  là các nghiệm của phương trình:

x^2+5x-24=0

=>x=-8 hoặc x=3

=>(u,v)=(-8;3) hoặc (u,v)=(3;-8)

5 tháng 5 2020

Gọi x1,x2 là các nghiệm của phương trình đã cho

Áp dụng hệ thức Vi-et,ta có :

x1 + x2 = -5 ; x1x2 = -1

gọi y1,y2 là các nghiệm của phương trình phải lập,ta được :

y1 + y2 = x14 + x24 , y1y2 = x14x24

Ta có : x12 + x22 = ( x1 + x2 )2 - 2x1x2 = 25 + 2 - 27

Do đó : y1 + y2 = x14 + x24 = ( x12 + x22 )2 - 2x12x22 = 729 - 2 = 727

y1y2 = ( x1x2 )4 = 1

Từ đó pt phải lập có dạng : y2 - 727y + 1 = 0

5 tháng 5 2020

Ta co: P = -1 <0 

=> (1) có 2 nghiệm phân biệt khác dấu 

Gọi hai nghiệm đó là \(x_1;x_2\)

=> \(x_1+x_2=-5;x_1.x_2=-1\)

Ta có: \(\left(x_1.x_2\right)^4=\left(-1\right)^4=1\)

\(\left(x_1\right)^4+\left(x_2\right)^4=\left(x_1^2+x_2^2\right)^2-2x_1^2x_2^2=\left[\left(x_1+x_2\right)^2-2x_1x_2\right]^2-2x_1^2x_2^2\)

\(=\left[\left(-5\right)^2-2.\left(-1\right)\right]^2-2.\left(-1\right)^2\)

\(=727\)

=> Phương trình có các nghiệm lũy thừa bậc 4 của các nghiệm phương trình (1) là: 

\(x^2-727x+1=0\)

III. Phương trình bậc nhất đối với sinx và cosx:*Giải các phương trình bậc nhất đối với sinx và cosx sau...
Đọc tiếp

III. Phương trình bậc nhất đối với sinx và cosx:

*Giải các phương trình bậc nhất đối với sinx và cosx sau đây:

(2.1)

1) \(2sinx-2cosx=\sqrt{2}\)

2) \(cosx-\sqrt{3}sinx=1\)

3) \(\sqrt{3}sin\dfrac{x}{3}+cos\dfrac{x}{2}=\sqrt{2}\)

4) \(cosx-sinx=1\)

5) \(2cosx+2sinx=\sqrt{6}\)

6) \(sin3x+\sqrt{3}cosx=\sqrt{2}\)

7) \(3sinx-2cosx=2\)

(2.3)

1) \(\left(sinx-1\right)\left(1+cosx\right)=cos^2x\)

2) \(sin\left(\dfrac{\pi}{2}+2x\right)+\sqrt{3}sin\left(\pi-2x\right)=1\)

3) \(\sqrt{2}\left(cos^4x-sin^4x\right)=cosx+sinx\)

4) \(sin2x+cos2x=\sqrt{2}sin3x\)

5) \(sinx=\sqrt{2}sin5x-cosx\)

6) \(sin8x-cos6x=\sqrt{3}\left(sin6x+cos8x\right)\)

7) \(cos3x-sinx=\sqrt{3}\left(cosx-sin3x\right)\)

8) \(2sin^2x+\sqrt{3}sin2x=3\)

9) \(sin^4x+cos^4\left(x+\dfrac{\pi}{4}\right)=\dfrac{1}{4}\) 

(2.3)

1) \(\dfrac{\sqrt{3}\left(1-cos2x\right)}{2sinx}=cosx\)

2) \(cotx-tanx=\dfrac{cosx-sinx}{sinx.cosx}\)

3) \(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}=4\)

4) \(\dfrac{1+sinx}{1+cosx}=\dfrac{1}{2}\)

5) \(3cosx+4sinx+\dfrac{6}{3cosx+4sinx+1}=6\)

(2.4)

a) Tìm nghiệm \(x\in\left(\dfrac{2\pi}{5};\dfrac{6\pi}{7}\right)\) của phương trình \(cos7x-\sqrt{3}sin7x+\sqrt{2}=0\)

b) Tìm nghiệm \(x\in\left(0;\pi\right)\) của phương trình \(4sin^2\dfrac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\dfrac{3\pi}{4}\right)\)

(2.5) Xác định tham số m để các phương trình sau đây có nghiệm:

a) \(mcosx-\left(m+1\right)sinx=m\)

b) \(\left(2m-1\right)sinx+\left(m-1\right)cosx=m-3\)

(2.6) Tìm GTLN, GTNN (nếu có) của các hàm số sau đây:

a) \(y=3sinx-4cosx+5\)

b) \(y=cos2x+sin2x-1\)

 

23
NV
30 tháng 7 2021

2.1

a.

\(\Leftrightarrow sinx-cosx=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{6}+k2\pi\\x-\dfrac{\pi}{4}=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5\pi}{12}+k2\pi\\x=\dfrac{13\pi}{12}+k2\pi\end{matrix}\right.\)

NV
30 tháng 7 2021

b.

\(cosx-\sqrt{3}sinx=1\)

\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=\dfrac{1}{2}\)

\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\)

3 tháng 11 2015

đương nhiên vẫn là 6 bậc chìm trong nước vì thuyền sẽ nổi theo khi thủy triều lên

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1

3 tháng 12 2021

Help meyeu

#include <bits/stdc++.h>
using namespace std;
double a,b,c,delta,x1,x2;
int main()
{
    //freopen("PTB2.inp","r",stdin);
    //freopen("PTB2.out","w",stdout);
    cin>>a>>b>>c;
    delta=(b*b-4*a*c);
    if (delta<0) cout<<"-1";
    if (delta==0) cout<<fixed<<setprecision(5)<<(-b/(2*a));
    if (delta>0)
    {
        x1=(-b-sqrt(delta))/(2*a);
        x2=(-b+sqrt(delta))/(2*a);
        cout<<fixed<<setprecision(5)<<x1<<" "<<fixed<<setprecision(5)<<x2;
    }
    return 0;
}