K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2024

A = 1 + 2 + 22 + 23 +...+ 2150

2A= 1 .2 + 2 . 2 + 22 . 2 + 23. 2 + ...+ 2150 . 2 

2A = 2 + 22 + 23 + 24 +...+ 2151

2A - A =  2 + 22 + 23 + 24 +...+ 2151

           -

              1 + 2 + 22 + 23 +...+ 2151

1A = 2151 -  1

A =   2151 - 1

11 tháng 12 2023

a) A = 2 + 2² + 2³ + ... + 2¹⁰⁰

⇒ 2A = 2² + 2³ + 2⁴ + ... + 2¹⁰¹

⇒ A = 2A - A

= (2² + 2³ + 2⁴ + ... + 2¹⁰¹) - (2 + 2² + 2³ + ... + 2¹⁰⁰)

= 2¹⁰¹ - 2

b) B = 1 + 5 + 5² + ... + 5¹⁵⁰

⇒ 5B = 5 + 5² + 5³ + ... + 5¹⁵¹

⇒ 4B = 5B - B

= (5 + 5² + 5³ + ... + 5¹⁵¹) - (1 + 5 + 5² + ... + 5¹⁵⁰)

= 5¹⁵¹ - 1

⇒ B = (5¹⁵¹ - 1) : 4

16 tháng 1 2016

A=12+22+32+......+20142

2A=22+32+42+.....+20142+20152

A=20152-12

A=4060224

AH
Akai Haruma
Giáo viên
24 tháng 8 2024

Lời giải:

$A=\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+\frac{1}{4}.\frac{4.5}{2}+....+\frac{1}{2013}.\frac{2013.2014}{2}$

$=\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2014}{2}$

$=\frac{3+4+5+...+2014}{2}$

$=\frac{1+2+3+4+5+...+2014}{2}-\frac{3}{2}$
$=\frac{2014.2015:2}{2}-\frac{3}{2}$

$=1014551$

11 tháng 10 2015

Nguyễn Huy Hải tính mt hửa? 

16 tháng 11 2015

Bước 1: Xét mẫu số của số hạng tổng quát trong tổng trên:

      S = 1 + 2 + ... + (n - 1) + n                     ( * )

      Khi viết S theo thứ tự ngược lại la có:

      S = n + (n - 1) + ... + 2 + 1                     ( ** )

     Cộng vế với vế của ( * ) và ( ** ) ta có:

     S + S = [1 + n] + [2 + (n - 1)] + ... + [(n - 1) + 2] + [n + 1]

     2 . S = [n + 1]   + [n + 1] +   . . .    + [n + 1]       + [n + 1]     (Tổng có n số hạng [n + 1] )

     2 . S = n.(n + 1)

  => S = n.(n + 1)/2

  => Số hạng tổng quát của tổng đã cho là:

     

Bước 2: Ta có nhận xét:

    

  =>                       ( *** )

Bước 3:  Thay n = 1, 2, ... vào ( *** ) ta được các đẳng thức tương ứng:

     

     

     

     .   .   .   

Cộng các vế với nhau ta được:

        

  

  

  

Vậy tổng đã cho có kết quả bằng 2.

 

13 tháng 10 2015

Đặt \(A=1+2+2^3+...+2^{2015}\)

\(\Rightarrow2^2A=2^2+2^3+2^5+...+2^{2017}\)

\(\Rightarrow2^2A-A=3A=\left(2^{2017}+2^2\right)-\left(1+2\right)=2^{2017}+4-3=2^{2017}+1\)

Do đó \(A=\frac{2^{2017}+1}{3}\)