K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2024

bạn áp dụng công thức: |a|+|b| \(\ge\) |a+b| (dấu "=" xảy ra khi a.b>0)

 

10 tháng 11 2024

\(\left|x-4\right|+\left|x-6\right|=\left|x-4\right|+\left|6-x\right|>=\left|x-4+6-x\right|=2\forall x\)

Dấu '=' xảy ra khi (x-4)(x-6)<=0

=>4<=x<=6

15 tháng 8 2016

\(A=\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)\)

    \(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)\)

Đặt : \(x^2+9x+19=a\) . Ta được :

  \(\left(a+1\right)\left(a-1\right)=a^2-1\)

Vì \(a^2\ge0\) với mọi x nên \(a^2-1\ge-1\)

Dấu \("="\) xảy ra khi \(a^2=0\Rightarrow a=0\Rightarrow x^2+9x+19=0\)

Mà : \(x^2+9x+19\ne0\) nên không có giá trị của x 

29 tháng 8 2021

Giấ trị nhỏ nhất là 8

29 tháng 8 2021

GTNN = 8 đạt khi   t=0\Leftrightarrow x=2t=0x=2

 
               
 
22 tháng 2 2019

\(A=8\left(x-2\right)^4+8\ge8\)

23 tháng 2 2019

chúc mừng bạn đã hoàn thành bài làm khi mình đã biết làm 

vì vậy mình sẽ ko cho bạn

5 tháng 6 2019

Ta có : 

\(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left(x-1\right)^4+2\left(x-1\right)^2\left(x-3\right)^2+\left(x-3\right)^4+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[\left(x-1\right)^2+\left(x-3\right)^2\right]^2+4\left(x-1\right)^2\left(x-3\right)^2\)

\(A=\left[2x^2-8x+10\right]^2+4\left(x^2-4x+3\right)^2\)

\(A=\left[2\left(x-2\right)^2+2\right]+4\left[\left(x-2\right)^2-1\right]^2\)

\(A=4\left(x-2\right)^4+8\left(x-2\right)^2+4+4\left(x-2\right)^4-8\left(x-2\right)^2+4\)

\(A=8\left(x-2\right)^4+8\ge8\)

Vậy GTNN của biểu thức A là 8 \(\Leftrightarrow x=2\)

Đặt x-2=y

=> \(A=\left(y+1\right)^4+\left(y-1\right)^4+6\left(y+1\right)^2\left(y-1\right)^2\)

Khai triển A ta được 

\(A=2y^4+12y^2+2+6\left(y^4-2y^2+1\right)\)

\(=8y^4+8=8\left(y^4+1\right)\ge8\)

Dấu "=" xảy ra khi y=0 lúc đó x=0+2=2

Vậy Amin=8 khi x=2

13 tháng 11 2016

a) GTNN = 0 khi x = -1

b) GTNN = 503 khi x =0

13 tháng 11 2016

b sai min=39 khi x=-2

16 tháng 12 2022

A=(x^2+5x-6)(x^2+5x+6)

=(x^2+5x)^2-36>=-36

Dấu = xảy ra khi x=0 hoặc x=-5

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)