K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)

=>\(\dfrac{xy-27}{9y}=\dfrac{1}{18}\)

=>\(\dfrac{2\left(xy-27\right)}{18y}=\dfrac{y}{18y}\)

=>2xy-54=y

=>2xy-y=54

=>y(2x-1)=54

mà 2x-1 lẻ

nên \(\left(2x-1;y\right)\in\left\{\left(1;54\right);\left(3;18\right);\left(9;6\right);\left(27;2\right)\right\}\)

=>\(\left(x;y\right)\in\left\{\left(1;54\right);\left(2;18\right);\left(5;6\right);\left(14;2\right)\right\}\)

10 tháng 11

x/9 - 3/y = 1/18

3/y = x/9 - 1/18

3/y= 2x-1/18

y(2x-1) = 3.18 = 54 

2x - 1 là ước lẻ của 54

=> 2x - 1 thuộc{3; 9; 27}

y thuộc {18; 6; 2}

2x thuộc{4; 10; 28}

x thuộc{2; 5; 14}

ta có cặp (x; y) thoả mãn là 

(18; 2), (6; 5), (2; 14)

17 tháng 3 2022

Bạn tham khảo nha!

undefined

17 tháng 3 2022

Tham khảo

undefined

5 tháng 4 2017

\(\dfrac{x}{9}-\dfrac{3}{y}=\dfrac{1}{18}\)

\(\dfrac{x}{9}-\dfrac{1}{18}=\dfrac{3}{y}\)

\(\dfrac{2x}{18}-\dfrac{1}{18}=\dfrac{3}{y}\)

\(\dfrac{2x-1}{18}=\dfrac{3}{y}\)

\(\Rightarrow\)(2x-1).y=18.3=54

54 có các ước là: \(\pm1;\pm2;\pm3;\pm6;\pm9;\pm18;\pm27;\pm54\)

*\(\left\{{}\begin{matrix}2x-1=1\\y=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=2\\y=54\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=54\end{matrix}\right.\)

*\(\left\{{}\begin{matrix}2x-1=54\\y=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=55\\y=1\end{matrix}\right.\)\(\notin\) N ( Loại)

*\(\left\{{}\begin{matrix}2x-1=2\\y=27\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3\\y=27\end{matrix}\right.\) \(\notin\) N ( Loại )

*\(\left\{{}\begin{matrix}2x-1=27\\y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=28\\y=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=14\\y=2\end{matrix}\right.\)

*\(\left\{{}\begin{matrix}2x-1=3\\y=18\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=4\\y=18\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=18\end{matrix}\right.\)

*\(\left\{{}\begin{matrix}2x-1=18\\y=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=19\\y=3\end{matrix}\right.\)\(\notin\) N ( Loại )

*\(\left\{{}\begin{matrix}2x-1=6\\y=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=7\\y=9\end{matrix}\right.\)\(\notin\) N ( Loại )

*\(\left\{{}\begin{matrix}2x-1=9\\y=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=10\\y=6\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)

Vậy có các cặp (x,y) t/m đề bài là : (1,54) ; (14,2) ; (2,18) ; (5,6)

13 tháng 2 2018

bạn học trường nào?kết bạn nhé !

NV
21 tháng 1 2021

1.

Gọi \(d=ƯC\left(2n^2+3n+1;3n+1\right)\)

\(\Rightarrow2n^2+3n+1-\left(3n+1\right)⋮d\)

\(\Rightarrow2n^2⋮d\Rightarrow2n\left(3n+1\right)-3.2n^2⋮d\)

\(\Rightarrow2n⋮d\Rightarrow2\left(3n+1\right)-3.2n⋮d\Rightarrow2⋮d\Rightarrow\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

\(d=2\Rightarrow3n+1=2k\Rightarrow n=2m+1\)

\(\Rightarrow n\) lẻ thì A không tối giản

\(\Rightarrow n\) chẵn thì A tối giản

NV
21 tháng 1 2021

2.

Giả thiết tương đương:

\(xy^2+\dfrac{x^2}{z}+\dfrac{y}{z^2}=3\)

Đặt \(\left(x;y;\dfrac{1}{z}\right)=\left(a;b;c\right)\Rightarrow a^2c+b^2a+c^2b=3\)

Ta có: \(9=\left(a^2c+b^2a+c^2b\right)^2\le\left(a^4+b^4+c^4\right)\left(c^2+a^2+b^2\right)\)

\(\Rightarrow9\le\left(a^4+b^4+c^4\right)\sqrt{3\left(a^4+b^4+c^4\right)}\)

\(\Rightarrow3\left(a^4+b^4+c^4\right)^3\ge81\Rightarrow a^4+b^4+c^4\ge3\)

\(\Rightarrow M=\dfrac{1}{a^4+b^4+c^4}\le\dfrac{1}{3}\)

\(M_{max}=\dfrac{1}{3}\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hay \(\left(x;y;z\right)=\left(1;1;1\right)\)

4 tháng 5 2022

\(\dfrac{1}{x}+\dfrac{y}{3}=\dfrac{5}{6}\Rightarrow\dfrac{6}{6x}+\dfrac{2xy}{6x}=\dfrac{5x}{6x}\Rightarrow6+2xy=5x\)

\(\Rightarrow5x-2xy=6\Rightarrow x\left(5-2y\right)=6\)

Do \(x,y\) là số tự nhiên nên \(x\inƯ^+\left(6\right)\)

TH1: \(x=1\Rightarrow5-2y=6\Rightarrow y=-\dfrac{1}{2}\) (loại)

TH2: \(x=2\Rightarrow5-2y=3\Rightarrow y=1\) (TM)

TH3: \(x=3\Rightarrow5-2y=2\Rightarrow y=\dfrac{3}{2}\) (Loại)

TH4: \(x=6\Rightarrow5-2y=1\Rightarrow y=2\) (TM)

4 tháng 5 2022

\(\Leftrightarrow6+2xy=5x\left(x\ne0\right)\)

\(\Leftrightarrow5x-2xy=6\Leftrightarrow x\left(5-2y\right)=6\)

\(\Leftrightarrow x=\dfrac{6}{5-2y}\) 

Để x nguyên thì 5-2y phải là ước của 6

\(\Rightarrow5-2y=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)

\(\Rightarrow y=\left\{4;3;2;1\right\}\Rightarrow x=\left\{-2;-6;6;2\right\}\)

 

16 tháng 8 2023

gợi ý nè:

thử cộng chúng lại xem

16 tháng 8 2023

\(\dfrac{x}{y+z+1}\) = \(\dfrac{y}{x+z+2}\) = \(\dfrac{z}{x+y-3}\) = \(x+y+z\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}\)=\(\dfrac{y}{x+z+2}\)=\(\dfrac{z}{x+y-3}\)=\(\dfrac{x+y+z}{y+z+1+x+z+2+x+y-3}\)

\(x+y+z\) = \(\dfrac{x+y+z}{2.\left(x+y+z\right)}\) = \(\dfrac{1}{2}\) (1)

\(\dfrac{x}{y+z+1}\) = \(\dfrac{1}{2}\) ⇒ 2\(x\) = y+z+1 

⇒ 2\(x\) + \(x\) = \(x+y+z+1\) (2)

 Thay (1) vào (2) ta có: 2\(x\) + \(x\) = \(\dfrac{1}{2}\) + 1

                                      3\(x\)      = \(\dfrac{3}{2}\) ⇒ \(x=\dfrac{1}{2}\)

\(\dfrac{y}{x+z+2}\) = \(\dfrac{1}{2}\) ⇒ 2y = \(x+z+2\) ⇒ 2y+y = \(x+y+z+2\) (3)

Thay (1) vào (3) ta có: 2y + y = \(\dfrac{1}{2}\) + 2 

                                   3y = \(\dfrac{5}{2}\) ⇒ y = \(\dfrac{5}{6}\)

Thay \(x=\dfrac{1}{2};y=\dfrac{5}{6}\) vào (1) ta có: \(\dfrac{1}{2}+\dfrac{5}{6}+z\) = \(\dfrac{1}{2}\)

                                                              \(\dfrac{5}{6}\) + z = 0 ⇒ z = - \(\dfrac{5}{6}\)

Kết luận: (\(x;y;z\)) = (\(\dfrac{1}{2}\); \(\dfrac{5}{6}\); - \(\dfrac{5}{6}\))

 

NV
14 tháng 12 2020

Hàm số xác định trên R khi và chỉ khi:

a.

\(\left(2m-4\right)x+m^2-9=0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}2m-4=0\\m^2-9\ne0\end{matrix}\right.\) \(\Rightarrow m=2\)

b.

\(x^2-2\left(m-3\right)x+9=0\) vô nghiệm

\(\Leftrightarrow\Delta'=\left(m-3\right)^2-9< 0\)

\(\Leftrightarrow m^2-6m< 0\Rightarrow0< m< 6\)

c.

\(x^2+6x+2m-3>0\) với mọi x

\(\Leftrightarrow\Delta'=9-\left(2m-3\right)< 0\)

\(\Leftrightarrow m>6\)

e.

\(-x^2+6x+2m-3>0\) với mọi x

Mà \(a=-1< 0\Rightarrow\) không tồn tại m thỏa mãn

f.

\(x^2+2\left(m-1\right)x+2m-2>0\) với mọi x

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-\left(2m-2\right)=m^2-4m+3< 0\)

\(\Leftrightarrow1< m< 3\)

16 tháng 8 2023

TH1: x + y + z  0

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

��+�+1 = ��+�+2 = ��+�−3 = �+�+��+�+1+�+�+2+�+�−3 

              = �+�+��+�+�+�+�+� = �+�+�2(�+�+�) = 12 

⇒ x + y + z = 12

⇒ x + y       = 12 - z

    x + z        = 12 - y

    y + z        = 12 - x

Thay y + z + 1 = 12 - x + 1

⇒ �12−�+1 = 12

⇒ 2x = 12 - x + 1

⇒ 2x + x = 12 + 1

⇒  3x   =  32

⇒   x    = 12

Thay x + z + 2 = 12 - y + 2

⇒ �12−�+2 = 12

⇒ 2y = 12 - y + 2

⇒ 2y + y = 12 + 2

⇒   3y  = 52

⇒     y   = 56

Thay x + y - 3 = 12 - z - 3

⇒ �12−�−3=\frac{1}{2}$

⇒ 2z = 12 - z - 3

⇒ 2z + z = 12 - 3

⇒  3z  = −52

⇒   z   = −56

TH2: x + y + z = 0

⇒ ��+�+1 = ��+�+2 = ��+�−3 = 0

⇒ x = y = z = 0

 

16 tháng 8 2023

loading...

https://olm.vn/cau-hoi/tim-tat-ca-cac-so-xyz-biet-dfracxyz1dfracyxz2dfraczxy-3xyz-giair-chi-tiet-ho-e-vs-a.8297156371934

=>(12-xy)/3x=5/6

=>6(12-xy)=15x

=>(12-xy)=5/2x

=>24-2xy=5x

=>5x+2xy=24

=>x(2y+5)=24

=>(x;2y+5) thuộc {(1;24); (2;12); (3;8); (4;6); (6;4); (8;3); (12;2); (24;1)}

mà x,y là các số tự nhiên

nên \(\left(x,y\right)\in\varnothing\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2021

Lời giải:

\(y'=\frac{2}{3}x+m\geq 0, \forall x\in\mathbb{R}\Leftrightarrow m\geq -\frac{2}{3}x, \forall x\in\mathbb{R}\)

\(\Leftrightarrow m\geq \max (\frac{-2}{3}x), \forall x\in\mathbb{R}\)

Vì $\frac{-2}{3}x$ không có max với mọi $x\in\mathbb{R}$ nên không tồn tại $m$