K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{1}{2^2}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{100}}\)

=>\(4A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}\)

=>\(4A-A=1+\dfrac{1}{2^2}+...+\dfrac{1}{2^{98}}-\dfrac{1}{2^2}-\dfrac{1}{2^4}-...-\dfrac{1}{2^{100}}\)

=>\(3A=1-\dfrac{1}{2^{100}}\)

=>\(A=\dfrac{1}{3}-\dfrac{1}{3\cdot2^{100}}\)

=>\(A< \dfrac{1}{3}\)

23 tháng 6 2016

A = 1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100

2A = 1 + 1/2 + 1/22 + 1/23 + ... + 1/299

2A - A = (1 + 1/2 + 1/22 + 1/23 + ... + 1/299) - (1/2 + 1/22 + 1/23 + 1/24 + ... + 1/2100)

A = 1 - 1/2100 < 1

Do 1 > 1/2100 => A > 0

=> 0 < A < 1

=> đpcm

14 tháng 5 2017

a, Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};...;\frac{1}{2017^2}< \frac{1}{2016.2017}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2017^2}>\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}=1-\frac{1}{2017}< 1\)Vậy...

b, Đặt A = \(\frac{1}{4}+\frac{1}{16}+\frac{1}{36}+...+\frac{1}{10000}\)

\(A=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)

\(A=\frac{1}{2^2}\left(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};.....;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

Thay B vào A ta được:

\(A< \frac{1}{4}\left(1+1\right)=\frac{1}{4}.2=\frac{1}{2}\)

Vậy....

14 tháng 5 2017

c, Ta có: \(\frac{1}{2^2}>\frac{1}{2.3};\frac{1}{3^2}>\frac{1}{3.4};....;\frac{1}{9^2}>\frac{1}{9.10}\)

\(\Rightarrow A>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(1)

Lại có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};....;\frac{1}{9^2}< \frac{1}{8.9}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)(2)

Từ (1) và (2) suy ra \(\frac{2}{5}< A< \frac{8}{9}\)(đpcm)

d, chắc là đề sai

e, giống câu a

26 tháng 4 2017

Sorry bạn nha , mình bấm nhầm nút

\(A=\frac{5}{4}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(A< \frac{5}{4}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< \frac{5}{4}+\frac{1}{2}-\frac{1}{100}< \frac{5}{4}+\frac{1}{2}=\frac{7}{4}\)

\(\Rightarrow\)\(A< \frac{7}{4}\)

Vậy , \(\frac{5}{4}< A< \frac{7}{4}\left(ĐPCM\right)\)

26 tháng 4 2017

BÀI KHÓ CỦA TRƯỜNG MÌNH ĐÓ THI HK2

GIÚP MÌNH NHÉ!!!!!!THANKS!!!!!!

4 tháng 7 2019

Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

1 tháng 8 2016

bạn ơi đề sai rồi bài này mình làm ở lớp rồi A<2

27 tháng 2 2017

không thể cm

6 tháng 5 2016

A=1/1nhân 2+1/2 nhân 3+1/3 nhân 4+...+1/2014 nhân 2015

A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/2014-1/2015

A=1/1-1/2015

A=2015/2015-1/2015

A=2014/2015

Mà 2014/2015<1

Vậy A<1