tìm gtnn của x^2/(x-1) khi x >1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P_{min}\Leftrightarrow\frac{x^2}{x-1}\)nhỏ nhất
\(\Rightarrow x^2\)nhỏ nhất \(\Rightarrow x=0\)
\(\Rightarrow P=0\)
Cũng lớp 8 nè <3
Cau 1: Ta có:
A=x^2 - 2*3x + 9 +2(y^2 - 2y +1) + 7
=(x-3)^2 +2(y-1)^2 +7 >+ 7
=> minA= 7 <=> x=3 và y=1
=x-1+1/(x-1)+1>=2căn((x-1)(1/(x-1))+1=3
giá trị nhỏ nhất x+1/(x-1) là 3 (bđt Cô si)
khi x=2
Áp dụng BĐT cosi ta có:
\(x-1>0;\frac{1}{x-1}>0\)
\(\Rightarrow x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right)\frac{1}{x-1}}\)
\(\Rightarrow x-1+\frac{1}{x-1}\ge2\Rightarrow x+\frac{1}{x-1}\ge3\)
Vậy f(x) đạt GTNN là 3 khi x = 2
do x>1 => \(\sqrt{x}-1>0\)ap dung bdt co si:\(\frac{\sqrt{x}-1}{2}+\frac{1}{\sqrt{x}-1}>=\sqrt{2}\)
=>\(\frac{\sqrt{x}}{2}+\frac{1}{\sqrt{x}-1}>=\sqrt{2}-\frac{1}{2}\)
dau bang xay ra khi \(\frac{\sqrt{x}-1}{2}=\frac{1}{\sqrt{x}-1}\)(tu tim x)
=>Bmin=\(\sqrt{2}-\frac{1}{2}\)
Ta có:
\(P=\frac{x^2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}\)
Áp dụng BĐT AM-GM ta có:
\(P=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+2=4\)
Dấu "=" xảy ra tại x=2
Vậy \(P_{min}=2\Leftrightarrow x=2\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\Leftrightarrow x^2-4x+4\ge0\Leftrightarrow x^2\ge4\left(x-1\right)\Leftrightarrow\frac{x^2}{x-1}\ge4\)
Đẳng thức xảy ra khi x = 2
x^2/x-1 = x^2-4x+4/x-1 + 4 = (x-2)^1/x-1 + 4 >= 4
Dấu "=" xảy ra <=> x-2 = 0 <=> x = 2 (tm)
Vậy GTNN của x^2/x-1 = 4 <=> x= 2
k mk nha