Tìm hai số tự nhiên a và b thỏa mãn: (b+1)(b+2)- 2 mũ a = 929
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) <=> 4n+4+3n-6 <19 <=> 7n<21 <=> n<3 (1)
b) <=> n^2 - 6n + 9 - n^2 +16 \(\le\)43
\(\Leftrightarrow\)-6n \(\le\)18 <=> n > 3 (2)
Từ 1 và 2 => n=\(\Phi\)
x^3-y^2=xy
=>(1) x(x^2-y)=y^2
x,y là các số tự nhiên => x^2-y là ước của y^2 => x^2 là ước của y^2 => x là ước của y => y=ax
=>(2) x^3=y(x+y)
=> x^3=ax(x+ax)=x^2.a.(a+1)
=> x=a(a+1)
Vậy x là tích 2 số tự nhiên liên tiếp; x,y có 2 chữ số.
a=1 => x=2 (loại)
a=2 => x=6 (loại)
a=3 => x=12 => y=36 (chọn)
a=4 => x=20 => y=80 (chọn)
a=5 => x=30 => y=150 (loại)
a>=5 thì y>100 => (loại)
Vậy (x,y)=(12,36) hoặc (x,y)=(20,80)
Vì 3 (a + b) = 5 (a - b) nên 3 (a + b) và 5 (a - b) là bội chung của 3 và 5.
=> Giá trị nhỏ nhất của 2 tích 3 (a + b) và 5 (a - b) sẽ là 15.
3 (a + b) = 15
=> a + b = 15 : 3
=> a + b = 5 (1)
5 (a - b) = 15
=> a - b = 15 : 5
=> a - b = 3 (2)
Từ (1) và (2) => a = 4 và b = 1
Đáp án A
Ta có 9 x + 9 − x − 2 = 2 1 + c os2nx ⇔ 3 x − 3 − x 2 = 4 c os 2 n x ⇔ 3 x − 3 − x = 2 cos n x a 3 x − 3 − x = − 2 cos n x b
Nhận xét x1 là nghiệm của P T a ⇒ − x 1 là nghiệm PT(b)
Giả sử 2PT a ; b có chung nghiệm x0 khi đó 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = 2 cos n x 0
⇔ 3 x 0 − 3 − x 0 = 2 cos n x 0 3 − x 0 − 3 x 0 = − 2 cos n x 0 ⇒ 3 x 0 = 3 − x 0 ⇒ x 0 = 0 thay vào PT a 3 0 − 3 0 = − 2 c os 0 ⇒ 0 = 1 vô lý
PT (a); (b) không có nghiệm chung. PT có 2.2018 = 4036 nghiệm.
Bước đầu tiên, chúng ta hãy xem xét phần (b+1)(b+2)(b + 1)(b + 2):
(b+1)(b+2)=b2+3b+2(b + 1)(b + 2) = b^2 + 3b + 2Do đó, phương trình trở thành:
b2+3b+2−2a=929b^2 + 3b + 2 - 2^a = 929 b2+3b+2=929+2ab^2 + 3b + 2 = 929 + 2^aBây giờ, ta thử từng giá trị của aa để tìm bb:
Thử a=8a = 8 (vì 28=2562^8 = 256)
Giải phương trình bậc hai:
b2+3b+2=1185b^2 + 3b + 2 = 1185 b2+3b−1183=0b^2 + 3b - 1183 = 0Giải phương trình bậc hai này bằng công thức nghiệm:
b=−b2±b2−4ac2ab = \frac{-b_2 \pm \sqrt{b^2 - 4ac}}{2a}Áp dụng cho a=1,b=3,c=−1183a = 1, b = 3, c = -1183:
b=−3±9+4⋅11832b = \frac{-3 \pm \sqrt{9 + 4 \cdot 1183}}{2} b=−3±47362b = \frac{-3 \pm \sqrt{4736}}{2}Bởi vì căn bậc hai của 4736 không phải là số nguyên, giá trị bb sẽ không phải là số tự nhiên.
Thử a=9a = 9 (vì 29=5122^9 = 512)
Giải phương trình bậc hai:
b2+3b+2=1441b^2 + 3b + 2 = 1441 b2+3b−1439=0b^2 + 3b - 1439 = 0Giải phương trình bậc hai này bằng công thức nghiệm:
b=−3±9+4⋅14392b = \frac{-3 \pm \sqrt{9 + 4 \cdot 1439}}{2} b=−3±57562b = \frac{-3 \pm \sqrt{5756}}{2}Bởi vì căn bậc hai của 5756 không phải là số nguyên, giá trị bb sẽ không phải là số tự nhiên.
Tiếp tục thử các giá trị khác của aa hoặc kiểm tra lại giả thiết và bài toán để tìm ra lời giải chính xác hơn (nếu bạn thấy tôi đúng)