A=1+2+3+4+...+267
Tính tổng A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(\dfrac{-17}{36}\) và \(\dfrac{23}{-48}\)
\(\dfrac{-17}{36}=\dfrac{-17.4}{36.4}=\dfrac{-68}{144}\)
\(\dfrac{23}{-48}=\dfrac{-23}{48}=\dfrac{-23.3}{144.3}=\dfrac{-69}{144}\)
Vì \(\dfrac{-68}{144}>\dfrac{-69}{144}\) nên \(\dfrac{-17}{36}>\dfrac{23}{-48}\)
b) \(\dfrac{-1}{3}\) và \(\dfrac{2}{5}\)
Vì \(\dfrac{-1}{3}\) là số âm mà \(\dfrac{2}{5}\) là số dương nên \(\dfrac{-1}{3}< \dfrac{2}{5}\)
c) \(\dfrac{2}{7}\) và \(\dfrac{5}{4}\)
Vì \(\dfrac{2}{7}< 1\) mà \(\dfrac{5}{4}>1\) nên \(\dfrac{2}{7}< \dfrac{5}{4}\)
d) \(\dfrac{267}{-268}\) và \(\dfrac{-1347}{1343}\)
\(\dfrac{267}{-268}=\dfrac{-267}{268}=\dfrac{-267.449}{268.449}=\dfrac{-119883}{120332}\)
\(\dfrac{-1347}{1343}=\dfrac{-1347.89}{1343.89}=\dfrac{-119883}{119527}\)
Vì \(\dfrac{-119883}{120332}>\dfrac{-119883}{119527}\) nên \(\dfrac{267}{-268}>\dfrac{-1347}{1343}\)
Bài 2:
\(\dfrac{5}{2}-\left(1\dfrac{3}{7}-0,4\right)=\dfrac{5}{2}-\dfrac{10}{7}-\dfrac{2}{5}=\dfrac{47}{70}\)
1, có từ 1đến 100 có 100 số hạng .Chia thành 50 nhóm .Mỗi nhóm co 2 số hạng
Suy ra A= [1+(-2)]+[3+(-4)]+......+[99+(-100)]
A= (-1)+(-1)+.... +(-1)
A= (-1).50=(-50)
2,A=(1-2)+(3-4)+.....+(2015-2016)
A=(-1)+(-1)+....+(-1)
A có 2016 số hạng .Chia thành 1008 nhóm .Mỗi nhóm co 2 số hạng và có tổng =(-1)
A=(-1).1008=(-1008)
\(A=\left(1+3+...+99\right)-\left(2+4+...+100\right)\)
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
\(A=2500-2550=-50\)
Đúng ko ta lâu rồi ko làm.
\(A=\left(\left(1+99\right)\cdot\frac{50}{2}\right)-\left(\left(2+100\right)\cdot\frac{50}{2}\right)\)
A = (-1)(-1)^2(-1)^3...(-1)^2019
A = (-1)^1+2+3+...+2019
A = (-1)^2039190
A = 1
S = 1.2.3 + 2.3.4 + 3.4.5 + ... + 2018.2019.2020
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + .... + 2018.2019.2020.4
4S = 1.2.3.4 + 2.3.4.(5 - 1) + 3.4.5.(6 - 2) + ... + 2018.2019.2020.(2021 - 2017)
4S = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2018.2019.2020.2021 - 2017.2018.2019
4S = 2018.2019.2020.2021
S = 2018.2019.2020.2021 : 4 = ...
1/
\(N=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+99\left(100-1\right)=\)
\(=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)=\)
Đặt
\(A=1.2+2.3+3.4+...+99.100\)
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=\)
\(=99.100.101\Rightarrow A=\dfrac{99.100.101}{3}=33.100.101\)
Đặt
\(B=1+2+3+...+99=\dfrac{99.\left(1+99\right)}{2}=4950\)
\(\Rightarrow N=A-B\)
2/
Số hạng cuối cùng là 10000 hoặc 1000000 mới làm được
\(A=1^2+2^2+3^2+...+100^2\)
Tính như câu 1
3/ Làm như bài 4
4/
\(S=1^2+3^2+5^2+...+99^2=\)
\(=1.\left(3-2\right)+3\left(5-2\right)+5\left(7-2\right)+...+99\left(101-2\right)=\)
\(=\left(1.3+3.5+5.7+...+99.101\right)-2\left(1+3+5+...+99\right)\)
Đặt
\(B=1+3+5+...+99=\dfrac{50.\left(1+99\right)}{2}=2500\)
Đặt
\(A=1.3+3.5+5.7+...+99.101\)
\(6A=1.3.6+3.5.6+3.7.6+...+99.101.6=\)
\(=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)=\)
\(=1.3+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103=\)
\(=3+99.101.103\Rightarrow A=\dfrac{3+99.101.103}{6}\)
\(\Rightarrow S=A-2B\)
Bài 1:
\(N=1^2+2^2+3^3+...+99^2\)
\(N=1.1+2.2+3.3+...+99.99\)
\(N=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(N=1.2-1+2.3-2+3.4-3+...+99.100-99\)
\(N=\left(1.2+2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
Đặt \(\left\{{}\begin{matrix}A=1.2+2.3+3.4+...+99.100\\B=1+2+3+...+99\end{matrix}\right.\)
+) Tính \(A=1.2+2.3+3.4+...+99.100\)
Ta có:
\(3A=1.2.3+2.3.3+3.4.3+...+99.100.3\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+99.100.\left(101-98\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100\)
\(3A=99.100.101\)
\(\Rightarrow A=\dfrac{99.100.101}{3}=333300\)
+) Tính \(B=1+2+3+...+99\)
\(B\) có số số hạng là: \(\dfrac{99-1}{1}\) + 1 = 99 (số hạng)
\(\Rightarrow B=\dfrac{\left(99+1\right).99}{2}=4950\)
\(\Rightarrow N=A-B=333300-4950=328350\)
\(\Rightarrow N=328350\)
a, để tính tổng A = 1 + 2 + 3 + 4 + … + 99 + 100, ta áp dụng công thức tổng của dãy số từ 1 đến n: S = (n * (n + 1)) / 2.
Với n = 100, ta có: A = (100 * (100 + 1)) / 2 = 5050.
b, để tính tổng B = 4 + 7 + 10 + 13 + … + 301, ta nhận thấy các số trong dãy này tạo thành một cấp số cộng với công sai d = 3.
Ta có công thức tổng của cấp số cộng: S = (n/2) * (a + l), trong đó n là số phần tử, a là số đầu tiên, l là số cuối cùng.
Số đầu tiên a = 4, số cuối cùng l = 301, và công sai d = 3.
Số phần tử n = ((l - a) / d) + 1 = ((301 - 4) / 3) + 1 = 100.
Vậy tổng B = (100/2) * (4 + 301) = 50 * 305 = 15250.
B2, để tính tổng của tất cả các số tự nhiên x, biết x là số có 2 chữ số và 12 < x < 91, ta cần tính tổng các số từ 13 đến 90.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 13 và b = 90, ta có: S = ((90 - 13 + 1) * (13 + 90)) / 2 = (78 * 103) / 2 = 4014.
B3, để tính tổng của tất cả các số tự nhiên a, biết a có 3 chữ số và 119 < a < 501, ta cần tính tổng các số từ 120 đến 500.
Áp dụng công thức tổng của dãy số từ a đến b: S = ((b - a + 1) * (a + b)) / 2.
Với a = 120 và b = 500, ta có: S = ((500 - 120 + 1) * (120 + 500)) / 2 = (381 * 620) / 2 = 118260.
a) 3A=1.2.3 + 2.3.3 + 3.4.3 +... + n.(n+1).3
=1.2.(3-0) + 2.3.(4-1) + ... + n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4 + ...+ (n-1).n.(n+1)+ n.(n+1)(n+2)] - [0.1.2+ 1.2.3 +...+(n-1).n.(n+1)]
=n.(n+1).(n+2)
=>S=[n.(n+1).(n+2)] : 3
Số số hạng của A là:
(267-1):1+1=267(số hạng)
Tổng của A là:
(267+1)x267:2=35778
Vậy A=35778
A=35778