Cho A = -1+3-5+7-...-101+103
Tính giá trị biểu thơcs A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số các số hạng của A là:
(103-1):2+1=52 số hạng
A=(-1+3)+(-5+7)+...+(-101+103)
Số cặp là:
52:2=26 cặp
A=2+2+2+2+...+2+2
=>A=2.26
=>A=52
a; A = |-101| + |21| + |-99| - |25|
A = 101 + 21 + 99 - 25
A = (101 + 99) - (25 - 21)
A = 200 - 4
A = 196
b; B = ||17 - 42| - 64|
B = ||-25| - 64|
B = |25 - 64|
B = |-39|
B = 39
c, C = |27 - 72| + |33 - 34| + |103 - 35|
C = |128 - 49| + |27 - 81| + |1000 - 243|
C = |79| + |-54| + | 757|
C = 79 + 54 + 757
C = 133 + 757
C = 890
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{100}{101}< 1\)
Vậy A<1 (điều cần chứng minh)
\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)
=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)
Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)
(101-5):4+1=25(số hạng)
=>A=25.(3+32+33+34)=25.120=3000
\(A=\dfrac{4}{3x5}+\dfrac{4}{5x7}+\dfrac{4}{7x9}+...+\dfrac{4}{97x99}+\dfrac{4}{99x101}\)
\(A=4x\left(\dfrac{1}{3x5}+\dfrac{1}{5x7}+\dfrac{1}{7x9}+...+\dfrac{1}{97x99}+\dfrac{1}{99x101}\right)\)
\(A=4x\left[\dfrac{1}{2}x\left(\dfrac{1}{3}-\dfrac{1}{5}\right)+\dfrac{1}{2}x\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\dfrac{1}{2}x\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\dfrac{1}{2}x\left(\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}x\left(\dfrac{1}{99}-\dfrac{1}{101}\right)\right]\)
\(A=4x\dfrac{1}{2}x\left[\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{101}\right]\)
\(A=2x\left(\dfrac{1}{3}-\dfrac{1}{101}\right)=2x\dfrac{98}{303}=\dfrac{916}{303}\)
Hướng dẫn giải:
a | 2 | 3 | 4 | 5 |
101 512 x a | 203 024 | 304 536 | 406 048 | 507 560 |
[ -1+2] + [ 3-4-5+6 ] + [ 7-8-7+10 ] + [ 11-12-13+14 ] + ................+ 99-100-101
= 1 + 0+0+0+0+...............+-102
= -101