Cho hình thang vuông ABCD (góc A = góc D = 90 độ) có CD = 2AB. Kẻ DH vuông góc với AC tại H. Gọi M là trung điểm của HC, N là trung điểm của DH. Chứng minh rằng:
- a) MN vuông góc với AD
- b) Tứ giác ABMN là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2,\)
Kẻ BH vuông góc với CD tại H
Xét hai tam giác BDH và BCH:
+) BH là cạnh chung
+) Góc BHD = góc BHC = 90 độ
+) DH = CH
=> Tam giác BDH = tam giác HCH (c.g.c)
=> BD = BC
Khác: DC = BC
=> BC = CD = DB => Tam giác BCD đều => Góc C = 60 độ
Mà: AB // CD => Góc B + góc C = 180 độ => Góc B = góc ABC = 180 độ - 60 độ = 120 độ
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
Tam giác ACD vuông tại C có góc CAD = góc ABC = 60 độ (cùng phụ với CAB)
=> AC = 2AD
Áp dụng Pytago ta có:
AC2 = AD2 + DC2
<=> 4AD2 = AD2 + 900
<=> AD2 = 300
<=> \(AD=10\sqrt{3}\)
Kẻ CH vuông với AB
AHCD là hình chữ nhật (có góc A=D=H = 900)
=> AH = CD = 30; CH = AD = \(10\sqrt{3}\)
Tgiac ACB vuông tại C, ta có:
CH2 =HA.HB
=> \(HB=\frac{CH^2}{HA}=10\)
=> AB = AH + HB = 40
\(S_{ABCD}=\frac{1}{2}CH.\left(AB+CD\right)=350\sqrt{3}\)
a, Bạn chứng minh được \(\Delta ABD\infty\Delta BDC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow AB.DC=BD^2\Rightarrow2.8=BD^2\Rightarrow BD^2=16\Rightarrow BD=4\left(cm\right)\)(vì AB = 2cm , CD = 8 cm)
Ta có: \(\frac{BD}{CD}=\frac{4}{8}=\frac{1}{2}\)
Xét tam giác BDC vuông tại B có: BD = 1/2 CD nên \(\widehat{C}=30^0\)
ABCD là hình thang vuông(gt) \(\Rightarrow AB//CD\)
\(\Rightarrow\widehat{ABC}+\widehat{C}=180^0\) ( 2 góc trong cùng phía)
\(\Rightarrow\widehat{ABC}+30^0=180^0\) (do góc C = 30 độ)
\(\Rightarrow\widehat{ABC}=150^0\)
b, Áp dụng định lí Pitago vào tam giác ABD vuông tại A, tính được: \(AD=\sqrt{12}\left(cm\right)\)
Diện tích hình thang ABCD là:
\(\frac{\left(2+8\right).\sqrt{12}}{2}=5\sqrt{12}\left(cm^2\right)\)
Chúc bạn học tốt.
Trả lời :
Bạn Nguyễn Khánh Huyền đừng bình luận linh tinh nhé.
- Hok tốt !
^_^
bạn nguyễn thị khánh huyền ơi đừng lấy ảnh của mk đi bình luận linh tinh nhé
ko hay đâu bạn ơi
a: Xét ΔHDC có
N,M lần lượt là trung điểm của HD,HC
=>NM là đường trung bình của ΔHDC
=>NM//DC và \(MN=\dfrac{DC}{2}\)
Ta có: NM//DC
DC\(\perp\)AD
Do đó: NM\(\perp\)DA
b: \(MN=\dfrac{DC}{2}\)
mà \(AB=\dfrac{DC}{2}\)
nên MN=AB
ta có: MN//CD
CD//AB
Do đó: MN//AB
Xét tứ giác ABMN có
AB//MN
AB=MN
Do đó: ABMN là hình bình hành