1.tính
a, (1/3)^2*(-1/3)\
b, (-2)^2*(-2)^3
c, (2^2)^2^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đề bài phải là khai triển biểu thức, chứ không phải là tính em nhé.
Lời giải:
Ta áp dụng hằng đẳng thức đáng nhớ thôi.
a. $(3+2x)^3=3^3+3.3^2.2x+3.3.(2x)^2+(2x)^3$
$=8x^3+36x^2+54x+27$
b.
$(\frac{1}{2}-y)^3=(\frac{1}{2})^3-3.(\frac{1}{2})^2.y+3.\frac{1}{2}y^2-y^3$
$=-y^3+\frac{3}{2}y^2-\frac{3}{4}y+\frac{1}{8}$
c.
$(x-5)(x^2+5x+25)=(x-5)^2(x^2+5x+5^2)$
$=x^3-5^3=x^3-125$
d.
$(3x+\frac{1}{2})(9x^2-\frac{3}{2}x+\frac{1}{4})$
$=(3x+\frac{1}{2})[(3x)^2-3x.\frac{1}{2}+(\frac{1}{2})^2]$
$=(3x)^3+(\frac{1}{2})^3=27x^3+\frac{1}{8}$
a) \(\dfrac{-3}{20}\) + \(\dfrac{-7}{4}\) =\(\dfrac{-3}{20}\) + \(\dfrac{-35}{20}\) = -2
b) 6 và \(\dfrac{2}{3}\) - 4 và \(\dfrac{2}{3}\) = 2
c) \(\dfrac{-3}{10}\) + \(\dfrac{7}{12}\) = \(\dfrac{-18}{60}\) + \(\dfrac{35}{60}\) =\(\dfrac{17}{60}\)
d) \(\dfrac{35}{-9}\) . \(\dfrac{81}{7}\) = \(\dfrac{-35}{9}\) . \(\dfrac{81}{7}\) = 45
e) \(\dfrac{-2}{5}\) - \(\dfrac{-3}{4}\) = \(\dfrac{-8}{20}\) - \(\dfrac{-15}{20}\) = \(\dfrac{-8}{20}\) + \(\dfrac{15}{20}\) =\(\dfrac{7}{20}\)
f) \(\dfrac{5}{23}\) . \(\dfrac{7}{26}\) + \(\dfrac{5}{23}\) .\(\dfrac{9}{26}\) = \(\dfrac{5}{23}\) . ( \(\dfrac{7}{26}\) + \(\dfrac{9}{26}\) )= \(\dfrac{5}{23}\) . \(\dfrac{8}{13}\) = \(\dfrac{40}{299}\)
g) \(\dfrac{-3}{12}\) : \(\dfrac{4}{15}\) =\(\dfrac{-3}{12}\) . \(\dfrac{15}{4}\) =\(\dfrac{-5}{8}\)
h) 1 và \(\dfrac{1}{6}\) - 3 và \(\dfrac{1}{3}\) =\(\dfrac{7}{6}\) -\(\dfrac{10}{3}\) = \(\dfrac{-13}{6}\)
i) \(\dfrac{-2}{5}\) . (-3) + \(\dfrac{3}{8}\) . \(\dfrac{4}{-10}\) =(\(\dfrac{-2}{5}\) .\(\dfrac{-4}{10}\)) + [(-3) . \(\dfrac{3}{8}\)
= \(\dfrac{4}{25}\) + \(\dfrac{-9}{8}\) = \(\dfrac{32}{200}\) + \(\dfrac{-225}{200}\) = \(\dfrac{-193}{200}\)
j) \(\dfrac{-13}{17}\) + (\(\dfrac{13}{-21}\) + \(\dfrac{-4}{17}\) )
= ( \(\dfrac{-13}{17}\) + \(\dfrac{-4}{17}\) )+\(\dfrac{-13}{21}\)
= -1+\(\dfrac{-13}{21}\)
= \(\dfrac{-21}{21}\) + \(\dfrac{-13}{21}\) = \(\dfrac{-34}{21}\)
Khôi nguyễn
`1`
`a, 1/2 +1/3= 3/6 + 2/6 =5/6`
`d, 1/3 +3/5= 5/15 + 9/15=14/15`
`c,4/5 +1/2= 8/10 + 5/10= 13/10`
`2`
`a,1/2 +1/4=2/4 +1/4=3/4`
`b, 2/3 +1/6 = 4/6+1/6=5/6`
`c, 7/12 +1/2=7/12+ 6/12= 13/12`
`3`
Giải
Cả `2` ngày đi tất cả số quãng đường là :
`1/4 +1/2 =1/4+ 2/4= 3/4 ( quãng đường)`
đ/s...
`@ yL`
a, \(1+\dfrac{3}{4}=\dfrac{7}{4}\)
b, \(\dfrac{4}{5}-\dfrac{3}{8}=\dfrac{32-15}{40}=\dfrac{17}{40}\)
c, \(1:\dfrac{2}{3}=\dfrac{1.3}{2}=\dfrac{3}{2}\)
d, \(\dfrac{2}{5}.\dfrac{5}{2}=1\)
\(a,\dfrac{1}{2-\sqrt{3}}-3\sqrt{\dfrac{1}{3}}+\sqrt{12}\\ =\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\dfrac{\sqrt{3^2}}{\sqrt{3}}+\sqrt{2^2.3}\\ =\dfrac{2+\sqrt{3}}{4-3}-\sqrt{3}+2\sqrt{3}\\ =2+\sqrt{3}-\sqrt{3}+2\sqrt{3}\\ =2+2\sqrt{3}\)
\(b,\dfrac{2}{1+\sqrt{2}}-\sqrt{9-\sqrt{32}}\\ =\dfrac{2\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\sqrt{9-4\sqrt{2}}\\ =\dfrac{2-2\sqrt{2}}{1-2}-\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\\ =-2+2\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =-2+2\sqrt{2}-\left|2\sqrt{2}-1\right|\\ =-2+2\sqrt{2}-2\sqrt{2}+1\\ =-1\)
a: f(-2)-g(1/2)
\(=5\left(-2\right)-3+4\cdot\dfrac{1}{2}-1\)
\(=-10-4+2=-10-2=-12\)
b: \(2\cdot f^2\left(-3\right)-3\cdot g^2\left(-2\right)\)
\(=2\cdot\left[5\cdot\left(-3\right)-3\right]^2-3\cdot\left[\left(-4\right)\left(-2\right)+1\right]^2\)
\(=2\cdot\left(-18\right)^2-3\cdot9^2\)
\(=648-3\cdot81=405\)
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)
\(=-2\sqrt{3}-5+6+2\sqrt{3}\)
=1
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)