K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta có : a2< = b =>( a2)4<= b4=> a8<=b4

          b2<=c=> (b2)2<=c2=> b4<=c2

          c2<=a 

  => a8<=b4<=c2<=a

   => a8<=a

    =>a8=a => a8=b4=c4=a

    => a8-a=8

     => a.(a7-1)=0   

     => a=0 = > b4=c2=1=> b=c=1 => a=b=c=1

hoặc : a7-1=0=>a7=1 => a=1=> b4=c2=0 => b=c=0 => a=b=c=0

Vậy : a=b=c=1 hoặc a=b=c=0

bạn đang đùa mình sao????

Trong bài làm của bạn sai nhiều chỗ nhưng mình hiểu 

25 tháng 7 2015

Ta có:a2<_b=>(a2)4<_b4=>a8<_b4

          b2<_c=>(b2)2<_c2=>b4<_c2

          c2<_a

=>a8<_b4<_c2<_a

=>a8<_a

=>a8=a=>a8=b4=c2=a

=>a8-a=0

=>a.(a7-1)=0

=>a=0=>b4=c2=1=>b=c=1=>a=b=c=1

hoặc a7-1=0=>a7=1=>a=1=>b4=c2=0=>b=c=0=>a=b=c=0

Vậy a=b=c=0,a=b=c=1

29 tháng 7 2015

Với mọi số nguyên n ta có: \(n\le n^2\). Do đó từ đề suy ra:

\(a^2\le b\le b^2\le c\le c^2\le a\le a^2\)

Do đó: a2=b=b2=c=c2=a=a2

Ta có: a2=a<=>a(a-1)=0<=>a\(\in\left\{0;1\right\}\)

Tương tự: b \(\in\left\{0;1\right\}\); c \(\in\left\{0;1\right\}\)

vậy a=b=c=1  hoặc a=b=c=0

6 tháng 10 2015

\(a^2\le b;b^2\le c;c^2\le a\) => a; b; c > 0

và \(a^4=\left(a^2\right)^2\le b^2\le c\) => \(\left(a^4\right)^2\le c^2\le a\) 

=> a< a => a = 0 hoặc a8/a < a/a => a7 < 1. Mà a nguyên dương nên a = 1

+) a = 0 : b2 < c ; c2 < a nên b = c = a = 0 

+) a = 1 => b2 < c ; c2 < a  nên b = c = 1

Vậy (a; b; c) = (0;0;0) hoặc (1;1;1)

NV
21 tháng 2 2021

Nếu có 2 số đồng thời bằng 0 BĐT tương đương \(0\le\dfrac{3}{4}\) hiển nhiên đúng

Nếu ko có 2 số nào đồng thời bằng 0:

\(VT=\dfrac{bc}{a^2+b^2+a^2+c^2}+\dfrac{ca}{a^2+b^2+b^2+c^2}+\dfrac{ab}{a^2+c^2+b^2+c^2}\)

\(VT\le\dfrac{bc}{2\sqrt{\left(a^2+b^2\right)\left(a^2+c^2\right)}}+\dfrac{ca}{2\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}}+\dfrac{ab}{2\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}}\)

\(VT\le\dfrac{1}{4}\left(\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{a^2+b^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{a^2+c^2}+\dfrac{b^2}{b^2+c^2}\right)=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(a=b=c\)

21 tháng 2 2021

\(bc\le\dfrac{\left(b+c\right)^2}{4}\Rightarrow\dfrac{bc}{a^2+1}\le\dfrac{\left(b+c\right)^2}{4\left(a^2+1\right)}\) chứng minh tương tự với mấy cái còn lại ta dc           \(\dfrac{bc}{a^2+1}+\dfrac{ac}{b^2+1}+\dfrac{ab}{c^2+1}\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{a^2+1}+\dfrac{\left(a+c\right)^2}{b^2+1}+\dfrac{\left(a+b\right)^2}{c^2+1}\right]\) .Thay a^2 +b^2 +c^2 =1 vào vế phải ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{\left(b+c\right)^2}{2a^2+b^2+c^2}+\dfrac{\left(a+c\right)^2}{2b^2+c^2+a^2}+\dfrac{\left(a+b\right)^2}{2c^2+a^2+b^2}\right]\)

áp dụng bunhiacopski dạng phân thức ta dc\(VT\le\dfrac{1}{4}\left[\dfrac{b^2}{a^2+b^2}+\dfrac{c^2}{a^2+c^2}+\dfrac{a^2}{b^2+a^2}+\dfrac{c^2}{b^2+c^2}+\dfrac{a^2}{c^2+a^2}+\dfrac{b^2}{c^2+b^2}\right]\)                           \(VT\le\dfrac{1}{4}\left[\dfrac{a^2+b^2}{a^2+b^2}+\dfrac{c^2+a^2}{c^2+a^2}+\dfrac{c^2+b^2}{c^2+b^2}\right]\) \(\Rightarrow VT\le\dfrac{1}{4}\left(1+1+1\right)=\dfrac{3}{4}\left(đpcm\right)\)

6 tháng 11 2017

\(a^2\le bb^2\le cc^2\le a\)

\(=a^2\le b^3\le c^3\le a\)

\(\Rightarrow a\in\left\{0;1\right\}\)

Với a = 0 <=> b,c = 0

Với a = 1 <=> b,c = 1 

NV
22 tháng 2 2021

\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)

\(\Rightarrow a^2+b^2\le8\)

\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)

15 tháng 4 2020

hhijestfijteryijryihrjgi

huhyhygtftfrhhfmmhjdhmjhmhxffhdfhdfghdfhdfhdfhhhfhhdfhhgfjgjghfghgghghhh

22 tháng 5 2020

Ta có: \(a^2+b^2+c^2+d^2\ge\frac{\left(a+b\right)^2}{2}+\frac{\left(c+d\right)^2}{2}\)

\(\Leftrightarrow1\ge\frac{\left(a+b\right)^2}{2}+\frac{1}{2}\)

\(\Leftrightarrow a+b\le1\)

Vậy Max a+b=1 khi và chỉ khi a=b=c=d=1/2