- Tìm x :
A) 12x+13x =2000
B)142 + ....+ x 55
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(3x-6y=3\cdot x-3\cdot2y=3\left(x-2y\right)\)
b: \(14x^2y-21xy^2+28x^2y^2\)
\(=7xy\cdot2x-7xy\cdot3y+7xy\cdot4xy\)
\(=7xy\left(2x-3y+4xy\right)\)
c: \(10x\left(x-y\right)-8y\cdot\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=\left(2\cdot5x+2\cdot4y\right)\left(x-y\right)\)
\(=2\left(5x+4y\right)\left(x-y\right)\)
bài 2:
a: Đề thiếu vế phải rồi bạn
b: \(x^3-13x=0\)
=>\(x\left(x^2-13\right)=0\)
=>\(\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=0\\x=\pm\sqrt{13}\end{matrix}\right.\)
Bài 1:
a, $3x-6y$
$=3(x-2y)$
b, $14x^2y-21xy^2+28x^2y^2$
$=7xy(2x-3y+4xy)$
c, $10x(x-y)-8y(y-x)$
$=10x(x-y)-8y[-(x-y)]$
$=10x(x-y)+8y(x-y)$
$=(x-y)(10x+8y)$
$=2(x-y)(5x+4y)$
Bài 2:
a, Đề thiếu rồi bạn nhé.
b, \(x^3-13x=0\)
\(\Rightarrow x\left(x^2-13\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2-13=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x^2=13\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{matrix}\right.\)
\(A=x^4+6x^3+13x^2+12x+12\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6x^2-18x-30+17\)
\(=\left(x^4+6x^3+19x^2+30x+25\right)-6\left(x^2+3x+5\right)+17\)
\(=\left(x^2+3x+5\right)^2-6\left(x^2+3x+5\right)+17\)
Đặt \(t=x^2+3x+5\)
Khi đó \(A=t^2-6t+17=t^2-2.t.3+9+8=\left(t-3\right)^2+8\ge8\)
Dấu "=" xảy ra <=> t - 3 = 0 <=> t = 3
<=> \(x^2+3x+5=3\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+x+2x+2=0\)
\(\Leftrightarrow x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}\)
Vậy AMin = 8 khi và chỉ khi x = -1 hoặc x = -2
Ta có : - ( x + 13 - 142 ) + 18 = 55
<=> - ( x + 13 - 142 ) = 55 - 18
<=> - ( x + 13 - 142 )= 27 ( Vô lí vì -( x +13 - 142 ) là 1 số nguyên âm còn 27 là số nguyên dương mà - ( x +13 - 142 ) = 27 )
Do đó x không tồn tại
Vậy không tồn tại x thỏa mãn
hok tốt
# owe
-(x+13-142)+18=55
=>- x-13+142+18=55
-x-13+142 = 55-18
- x-13+142 = 37
- x-13 = 37-142
- x-13 = -105
-x = -105+13
- x = -92
x =92
Vậy x = 92
(Nếu bạn nào muốn tham gia team mik kb nha)
a)
\(\frac{x\left(x+1\right)}{2}=36\)(quy tắc tính tổng)
=>\(x\left(x+1\right)=72\)
=>\(x\left(x+1\right)=8.9\)
=>x=8
b)\(12x+13x=2000\Rightarrow\left(12+13\right)x=2000\Rightarrow25x=2000\Rightarrow x=80\)
c)
(x-1)(x-5)=0
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}}\)
cái ngoặc vuông là "hoặc " nhé
a)\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\5x-13=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{13}{5}\end{array}\right.\)
b)\(6x^4=9x^3\Leftrightarrow6x^4-9x^3=0\Leftrightarrow3x^3\left(2x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}3x^3=0\\2x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{3}{2}\end{array}\right.\)
c)\(\left(x-2\right)^2-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x-2\right)^2=4x^2+12x+9\)
\(\Leftrightarrow\left(x-2\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow x-2=2x+3\)
\(\Leftrightarrow-x=5\Leftrightarrow x=-5\)
1/
a/ \(D=2x\left(10x^2-5x-2\right)-5x\left(4x^2-2x-1\right)\)
\(D=2x\left[10\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)\right]-5x\left[4\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\right]\)
\(D=20x\left(x^2-\frac{1}{2}x-\frac{1}{5}\right)-20x\left(x^2-\frac{1}{2}x-\frac{1}{4}\right)\)
\(D=20x^3-10x^2-4x-20x^3+10x^2+5x\)
\(D=x\)
b/ Mình xin sửa lại đề:
Tính giá trị biểu thức \(E\left(x\right)=x^5-13x^4+13x^3-13x^2+13x+2012\)
Tại x = 12
\(E\left(x\right)=x^5-\left(x+1\right)x^4+\left(x+1\right)x^3-\left(x+1\right)x^2+\left(x-1\right)x+2012\)
\(E\left(x\right)=x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+2012\)
\(E\left(x\right)=2012-x\)
\(E\left(x\right)=2000\)
2/
a/ \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
<=> \(2x^2-10x-3x-2x^2=26\)
<=> \(-13x=26\)
<=> \(x=-2\)
b/ Bạn vui lòng coi lại đề.
3a/ Ta có \(D=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)
\(D=5x^2-3x-x^3+x^2+x^3-6x^2-10+3x\)
\(D=-10\)
Vậy giá trị của D không phụ thuộc vào x (đpcm)
1)Ta có:
aaabbb
= 111000 x a + 111 x b = 111 x (1000.a+b)
= a00b.111
=> đpcm
a: \(A=\left(\dfrac{2\left(2x+1\right)}{2\left(2x+4\right)}-\dfrac{x}{3x-6}-\dfrac{2x^3}{3x^3-12x}\right):\dfrac{6x+13x^2}{24x-12x^2}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^3}{3x\left(x^2-4\right)}\right):\dfrac{x\left(13x+6\right)}{x\left(24-12x\right)}\)
\(=\left(\dfrac{2x+1}{2\left(x+2\right)}-\dfrac{x}{3\left(x-2\right)}-\dfrac{2x^2}{3\left(x-2\right)\left(x+2\right)}\right):\dfrac{13x+6}{-12\left(x-2\right)}\)
\(=\dfrac{3\left(2x+1\right)\left(x-2\right)-2x\left(x+2\right)-4x^2}{6\left(x+2\right)\left(x-2\right)}\cdot\dfrac{-12\left(x-2\right)}{13x+6}\)
\(=\dfrac{3\left(2x^2-3x-2\right)-2x^2-4x-4x^2}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{6x^2-9x-6-6x^2-4x}{x-2}\cdot\dfrac{-2}{13x+6}\)
\(=\dfrac{-\left(13x+6\right)\cdot\left(-2\right)}{\left(13x+6\right)\left(x-2\right)}=\dfrac{2}{x-2}\)
b: Để A>0 thì x-2>0
hay x>2
Để A>-1 thì A+1>0
\(\Leftrightarrow\dfrac{2+x-2}{x-2}>0\)
=>x/x-2>0
=>x>2 hoặc x<0
A) 12x + 13x = 2000
=> 25x = 2000
=> x = 2000 :25
=> x = 80