K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

Gọi P và Q lần lượt là trung điểm của AC' và CA'.

CC' giao MN tại I

Xét tam giác AC'C. P là trung điểm AC', M là trung điểm của AC

=> PM là đường trung bình tam giác AC'C => PM//CC'

hay C'I//PM

C' là trọng tâm tam giác ABD => C'N=AN/3.(T/c trọng tâm)

Mà P là trung điểm AC' => C' là trung điểm PN.

Xét tam giác PNM: C' là trung điểm PN, C'I//PM => I là trung điểm của MN

=> CC' đi qua trung điểm của MN (1)

Tương tự ta chứng minh được AA' đi qua trung điểm MN (2)

Tương tự xét trong tam giác DMB: BB' và DD' cùng đi qua trung điểm I của MN (3)

Từ (1),(2) và (3) => AA';BB';CC';DD',MN đồng quy (đpcm).

Bạn dựa theo dạng này

30 tháng 11 2021

Vậy B nằm trên đường trung trực của đoạn thẳngAC (1)
Tương tự ta có AD=CD (gt)
Vậy D nằm trên đường trung trực của AC (2)
Từ (1) và (2) ta suy ra BD là đường trung trực của AC (đpcm)

b,ΔABD=ΔCBD(c.c.c)⇒ˆBAD=ˆBCDΔABD=ΔCBD(c.c.c)⇒BAD^=BCD^

Ta lại có :

ˆBAD+ˆBCD=3600−ˆB−ˆDBAD^+BCD^=3600−B^−D^

=3600−1000−700=1900=3600−1000−700=1900

do đó :ˆA=ˆC=1900:2=950

24 tháng 7 2018

Dựng ra ngoài tam giác ABC vuông cân tại B điểm P sao cho t/g PBM vuông cân tại B

=> góc PBM = góc ABC => góc PBC = góc MBA 

=> Mà BA= BC. BP = BM => t/g PBC = t/g MBA 

=> 2MB^2 = PM^2 => 2MB^2 + MC^2 = PC^2 = MA^2

30 tháng 6 2017

Hình vuông

26 tháng 11 2014

A B C D F E

vì tam giác ABE đều nên góc ABE = AEB = 600

suy ra goc EBC = 90 - 30 = 600

vì tam giác BFC đều nên goc FBC = FCB = 60o

Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o

suy ra goc BEF = \(\frac{180-90}{2}\)=45o

ta có goc AEF = AEB + BEF = 60 + 45 = 105o

ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o

Ta có goc AED + goc AEF = 75 + 105 = 180o

suy ra D, E, F thẳng hàng

5 tháng 8 2018

Ngọc Linh tự vẽ hình nha!

- Vẽ tam giác đều BCM => BC= MC (1)

- Xét tam giác ACB: ACD+DCB = 45

=> DCB=45-30=15

mà ACM+ACB=60 => ACM=60-45=15

=> DCB=ACM (2)

Cminh tam giác AMB=AMC(C.C.C)\

=>AMC=AMB=M/2=60/2=30

mà AMC=30 => AMC=DBC(3)

Từ (1),(2),(3) => tam giác DBC=AMC(g.c.g)

=> cd=ca

5 tháng 8 2018

Cách của xoài nhanh hơn, diệp à

1 tháng 9 2019

A B C D H K E F M N P Q O S T K L I R

Ta cần hai bổ đề:

Bổ đề 1: (Hình bên phải) Xét tứ giác MNPQ nội tiếp (QN). Trên MQ và NP lấy S,T sao cho ^MNS = ^PQT. Khi đó MP chia đôi ST.

Thật vậy: Gọi NS,QT cắt (QN) tại điểm thứ hai lần lượt là K,L. KL cắt MP tại I

Áp dụng ĐL Pascal cho bộ 6 điểm Q,K,M,N,L,P ta được 3 điểm S,I,T thẳng hàng

Ta có ^MNK và ^PQL là hai góc nội tiếp, ^MNK = ^PQL nên (MK = (PL

Từ đó dựng \(\Delta\)PRL vào phía trong đường tròn sao cho \(\Delta\)PRL = \(\Delta\)KSM

Vì tứ giác MKPL là hình thang cân nên IS = IR (Tính đối xứng)

Ta thấy ^IPT = ^MKS (Cùng chắn cung MN) = ^LPR. Tương tự ^PLT = ^ILR

Suy ra T và R là hai điểm Đẳng giác trong \(\Delta\)PIL => ^RIP = ^TIL

Ta lại có ^PTL = ^KSM = ^PRL ( = 900 + ^MNK = 900 + ^PQL) => Tứ giác TRPL nội tiếp

Từ đó có biến đổi góc: ^IRT = 3600 - ^IRP - ^PRT = ^RIP + ^RPI + ^TLP = ^TIL + ^TRL + ^ILR = ^ITL

=> \(\Delta\)TIR cân tại I => IT = IR = IS. Tức là MP đi qua trung điểm I của ST.

Bổ đề 2: (Hình bên trái) Xét 2 góc ^ACB và ^ADB cùng nhìn đoạn AB dưới một góc không đổi (C và D nằm khác phía so với AB). Kẻ AE,BF vuông góc với BC,AD. Khi đó EF chia đôi CD.

Chứng minh: Gọi H,K lần lượt là trực tâm của \(\Delta\)ABC và \(\Delta\)ABD. Do ^ACB và ^ADB cùng nhìn AB dưới một góc không đổi nên tâm ngoại tiếp của \(\Delta\)ABC và \(\Delta\)ADB đối xứng nhau qua AB. Theo một kết quả quen thuộc thì CH = DK.

Suy ra tứ giác CHDK là hình bình hành, trung điểm của HK và CD trùng nhau (1)

Chú ý tứ giác AEBF nội tiếp (AB), ^EBH = ^FAK. Áp dụng Bổ đề 1 ta được EF chia đôi HK (2)

Từ (1) và (2) suy ra EF cũng chia đôi CD.

Giải bài toán:  

A B C D O P Q M N

Gọi O là tâm của hình thoi ABCD. Từ P,Q lần lượt kẻ PM,QN vuông góc với CQ,AP.

Ta thấy ^PAQ và ^PCQ cùng nhìn đoạn PQ dưới một góc không đổi bằng 1/2.^DAB

Đồng thời có PM vuông góc CQ, QN vuông góc AP. Áp dụng Bổ đề 2 ta thu được MN chia đôi AC

Hay MN đi qua O. Mặt khác ta có: \(\Delta\)CMP ~ \(\Delta\)COB (g.g) => \(\Delta\)CMO ~ \(\Delta\)CPB (c.g.c)

Suy ra ^CBP = ^COM = ^AON (Vì lúc này ^AON và ^COM đối đỉnh). Tương tự ^AON = ^ADQ

Từ đó ^CBP = ^ADQ. Kết hợp với BC // AD suy ra BP // DQ (đpcm).

1 tháng 9 2019

còn cách khác không? Mình đang học chuyên đề hình thoi