cho S=3+3 mũ 2 + 3 mũ 3 .........................+ 3 mũ100
CM : S:4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 3 + 32 + 33 + 34 + 35 + 36 + 37 + 38 + 39 = (1 + 3) + (32 + 33) + (34 + 35) + (36 + 37) + (38 + 39) = 1.(1 + 3) + 32.(1 + 3) + 34.(1 + 3) + 36.(1 + 3) + 38.(1 + 3) = (1 + 3).(1 + 32 + 34 + 36 + 38) = 4.(1 + 32 + 34 + 36 + 38) => S ⋮ 4. Vậy S ⋮ 4 (đpcm)
Số số hạng của S:
20 - 0 + 1 = 21 (số)
Do 21 ⋮ 3 nên ta có thể nhóm các số hạng của S thành từng nhóm mà mỗi nhóm có 3 số hạng như sau:
S = (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3¹⁸ + 3¹⁹ + 3²⁰)
= 13 + 3³.(1 + 3 + 3²) + ... + 3¹⁸.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3¹⁸.13
= 13.(1 + 3³ + ... + 3¹⁸) ⋮ 13
Vậy S ⋮ 13
S= 1+3+32+33+34+...+319+320
S= (1+3+32) + (33+34+35) + ... + (318+319+320)
S= 13.1+ 32.(1+3+32) + 317.(1+3+32)
S= 13.1+32.13+317.13
S= 13.(1+32+317) \(⋮\) 13
S\(⋮\) 13
Vậy S\(⋮\) 13
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{299}+3^{300}\right)\\ S=\left(1+3\right)\left(1+3^2+...+3^{299}\right)\\ S=4\left(1+3^2+...+3^{299}\right)⋮4\)
a, \(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(\Leftrightarrow3^2S=3^2+3^4+3^6+3^8+...+3^{2022}\)
\(\Leftrightarrow3^2S-S=3^{2022}-3^0\)
\(\Leftrightarrow9S-S=3^{2022}-1\)
\(\Leftrightarrow8S=3^{2022}-1\Leftrightarrow S=\frac{3^{2022}-1}{8}\)
b,\(S=3^0+3^2+3^4+3^6+...+3^{2020}\)
\(=\left(3^0+3^2+3^4\right)+\left(3^6+3^8+3^{10}\right)+...+\left(3^{2016}+3^{2018}+3^{2020}\right)\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+3^{2016}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{2016}\right)\)
\(=91\left(1+3^6+...+3^{2016}\right)=13.7\left(1+3^6+...+3^{2016}\right)⋮7\)
=> đpcm
Tham khảo :
a, S=30+32+34+36+...+32020S=30+32+34+36+...+32020
⇔32S=32+34+36+38+...+32022⇔32S=32+34+36+38+...+32022
⇔32S−S=32022−30⇔32S−S=32022−30
⇔9S−S=32022−1⇔9S−S=32022−1
⇔8S=32022−1⇔S=32022−18⇔8S=32022−1⇔S=32022−18
b,S=30+32+34+36+...+32020S=30+32+34+36+...+32020
=(30+32+34)+(36+38+310)+...+(32016+32018+32020)=(30+32+34)+(36+38+310)+...+(32016+32018+32020)
=(1+32+34)+36(1+32+34)+...+32016(1+32+34)=(1+32+34)+36(1+32+34)+...+32016(1+32+34)
=(1+32+34)(1+36+...+32016)=(1+32+34)(1+36+...+32016)
=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7=91(1+36+...+32016)=13.7(1+36+...+32016)⋮7 (
=> (đpcm)
=>99
S = 3 + 32 + 33 + ............... + 3100
S = ( 3 + 32 + 33 + 34 ) + ....................... + ( 397 + 398 + 399 + 3100 )
S = 3 . ( 1 + 3 + 32 + 33 ) + ................ + 397 . ( 1 + 3 + 32 + 33 )
S = 3 . 40 + .................. + 397 . 40
S = 120( 32 + ............... + 397 )
Mà 120 \(⋮\)4
Vậy S \(⋮\)4 ( đpcm )
S = (3+3^2)+(3^3+3^4)+....+(3^99+3^100)
= 3.(1+3)+3^3.(1+3)+....+3^99.(1+3)
= 3.4+3^3.4+...+3^99.4
= 4.(3+3^3+....+3^99) chia hết cho 4