\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)x.......x\left(1-\frac{1}{10}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
\(=\frac{1}{x}\)
ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{x+5}\)
=\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}\)
= \(\frac{1}{x}\)
d) \(\frac{1}{\left(x+2\right)}+\frac{1}{\left(x+3\right)}=\frac{1}{\left(x+2\right)\left(x+3\right)}\)
ĐKXĐ : \(x\ne-2;x\ne-3\)
\(\Leftrightarrow x+3+x+2=1\)
\(\Leftrightarrow2x=-4\)
\(\Leftrightarrow x=-2\) (không nhận)
Vậy : \(S=\varnothing\)
Giai phương trình sau :
a) \(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{3}{1-x}=\frac{5}{x+5}\)
ĐKXĐ : \(x\ne1;x\ne-5\)
Với điều kiện trên ta có :
\(\Leftrightarrow\)\(\frac{10}{\left(x+5\right)\left(x-1\right)}+\frac{-3}{x-1}=\frac{5}{x+5}\)
\(\Leftrightarrow10-3\left(x+5\right)=5\left(x-1\right)\)
\(\Leftrightarrow10-3x-15=5x-5\)
\(\Leftrightarrow-8x=0\)
\(\Leftrightarrow x=0\) (nhận)
Vậy : \(S=\left\{0\right\}\)
quá dễ tách ra thành 1\x-1\x+1+1\x+1-1\x+2+1\x+2-1\x+3+1\x+3-1\x+4+...+1\x+5-1\x+6
=1\x-1\x+6
=6\x(x+6)
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+6\right)}\)\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)\(=\frac{6}{x\left(x+6\right)}\)
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
1.
\(\frac{2x+3}{4}-\frac{5x+3}{6}=\frac{3-4x}{12}\)
\(MC:12\)
Quy đồng :
\(\Rightarrow\frac{3.\left(2x+3\right)}{12}-\left(\frac{2.\left(5x+3\right)}{12}\right)=\frac{3x-4}{12}\)
\(\frac{6x+9}{12}-\left(\frac{10x+6}{12}\right)=\frac{3x-4}{12}\)
\(\Leftrightarrow6x+9-\left(10x+6\right)=3x-4\)
\(\Leftrightarrow6x+9-3x=-4-9+16\)
\(\Leftrightarrow-7x=3\)
\(\Leftrightarrow x=\frac{-3}{7}\)
2.\(\frac{3.\left(2x+1\right)}{4}-1=\frac{15x-1}{10}\)
\(MC:20\)
Quy đồng :
\(\frac{15.\left(2x+1\right)}{20}-\frac{20}{20}=\frac{2.\left(15x-1\right)}{20}\)
\(\Leftrightarrow15\left(2x+1\right)-20=2\left(15x-1\right)\)
\(\Leftrightarrow30x+15-20=15x-2\)
\(\Leftrightarrow15x=3\)
\(\Leftrightarrow x=\frac{3}{15}=\frac{1}{5}\)
ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)
PT ban đầu
\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)
Chúc bạn học tốt nha.
Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)
Chúc bạn học tốt nha.
Ta có
\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times....\times\left(1-\frac{1}{10}\right)\)
\(=\frac{1}{2}\times\frac{2}{3}\times....\times\frac{9}{10}\)
\(=\frac{1}{10}\)