Tìm gia trị nhỏ nhất:
B=\(\left(0,5x^2+x\right)^2-3.\left|0,5x^2+x\right|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Với \(x = - 3\)\( \Rightarrow f\left( { - 3} \right) = 4.\left( { - 3} \right) - 1 = - 13;g\left( { - 3} \right) = - 0,5.\left( { - 3} \right) + 8 = 9,5\);
+ Với \(x = - 2\)\( \Rightarrow f\left( { - 2} \right) = 4.\left( { - 2} \right) - 1 = - 9;g\left( { - 2} \right) = - 0,5.\left( { - 2} \right) + 8 = 9\);
+ Với \(x = - 1\)\( \Rightarrow f\left( { - 1} \right) = 4.\left( { - 1} \right) - 1 = - 5;g\left( { - 1} \right) = - 0,5.\left( { - 1} \right) + 8 = 8,5\);
+ Với \(x = 0\)\( \Rightarrow f\left( 0 \right) = 4.0 - 1 = - 1;g\left( 0 \right) = - 0,5.0 + 8 = 8\);
+ Với \(x = 1\)\( \Rightarrow f\left( 1 \right) = 4.1 - 1 = 3;g\left( 1 \right) = - 0,5.1 + 8 = 7,5\);
+ Với \(x = 2\)\( \Rightarrow f\left( 2 \right) = 4.2 - 1 = 7;g\left( 2 \right) = - 0,5.2 + 8 = 7\);
+ Với \(x = 3\)\( \Rightarrow f\left( 3 \right) = 4.3 - 1 = 11;g\left( 3 \right) = - 0,5.3 + 8 = 6,5\).
Ta có bảng sau:
\(x\) | –3 | –2 | –1 | 0 | 1 | 2 | 3 |
\(y = f\left( x \right) = 4x - 1\) | –13 | –9 | –5 | –1 | 3 | 7 | 11 |
\(y = g\left( x \right) = - 0,5x + 8\) | 9,5 | 9 | 8,5 | 8 | 7,5 | 7 | 6,5 |
Pt hoành độ giao điểm: \(-\dfrac{1}{2}x+3=\left|x-3\right|\)
- Với \(x< 3\Rightarrow-\dfrac{1}{2}x+3=3-x\Rightarrow x=0\Rightarrow y=3\)
\(\Rightarrow A\left(0;3\right)\) là tọa độ đỉnh thứ nhất
- Với \(x>3\Rightarrow-\dfrac{1}{2}x+3=x-3\Rightarrow x=4\Rightarrow y=1\)
\(\Rightarrow B\left(4;1\right)\) là tọa độ đỉnh thứ 2
Hàm \(g\left(x\right)\) gãy khúc tại giao của nó với trục hoành \(\Rightarrow\left|x-3\right|=0\Rightarrow x=3\)
\(\Rightarrow C\left(3;0\right)\) là đỉnh thứ 3 của tam giác
Gọi D là giao điểm của \(f\left(x\right)\) với trục hoành \(\Rightarrow y_D=0\Rightarrow-\dfrac{1}{2}x_D+3=0\Rightarrow x_D=6\)
Gọi E là hình chiếu vuông góc của B xuống Ox \(\Rightarrow E\left(0;4\right)\)
\(S_{ABC}=S_{OAD}-\left(S_{OAC}+S_{BCD}\right)\)
\(=\dfrac{1}{2}OA.OD-\left(\dfrac{1}{2}OA.OC+\dfrac{1}{2}CD.BE\right)\)
\(=\dfrac{1}{2}\left|y_A\right|.\left|x_D\right|-\left(\dfrac{1}{2}\left|y_A\right|.\left|x_C\right|+\dfrac{1}{2}\left|x_D-x_C\right|.\left|y_B\right|\right)\)
\(=\dfrac{1}{2}.3.6-\left(\dfrac{1}{2}.3.3-\dfrac{1}{2}.\left(6-3\right).1\right)=3\)
7:
a: =>0,5x-5=2 hoặc 0,5x-5=-2
=>0,5x=3 hoặc 0,5x=7
=>x=6 hoặc x=14
b: |5x-2|=-3
mà |5x-2|>=0
nên ptvn
c: =>1/4x+3=0
=>1/4x=-3
=>x=-12
=>1/2:(0,5x-1,5)=0,2-0,35=-0,15=-3/20
=>0,5x-1,5=1/2:(-3/20)=-1/2*20/3=-10/3
=>0,5x=-10/3+3/2=-11/6
=>x=-11/3
\(0,5x-75\%x=\left(\frac{1}{3}-1\right)^2\)
\(\Leftrightarrow\frac{1}{2}x-\frac{3}{4}x=\left(-\frac{2}{3}\right)^2\)
\(\Leftrightarrow-\frac{1}{4}x=\frac{4}{9}\)
\(\Leftrightarrow x=-\frac{16}{9}\)
\(0,5x-75\%x=\left(\frac{1}{3}-1\right)^2\)
\(< =>\frac{1}{2}x-\frac{3}{4}x=\left(-\frac{2}{3}\right)^2\)
\(< =>-\frac{1}{4}x=\frac{4}{9}\)
\(=>x=\frac{-16}{9}\)
a) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y\right)^3-3\left(2x^3y\right)^20,5x^2+3.2x^3y\left(0,5x^2\right)^2-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+1,5x^7y-0,125x^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=x^3-3^3\)
\(=x^3-27.\)
a,\(\left(2x^3y-0,5x^2\right)^3=\left(2x^3y\right)^3-3.\left(2x^3y\right)^2.\left(0,5x^2\right)+3.\left(0,5x^2\right)^2.\left(2x^3y\right)-\left(0,5x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\frac{3}{2}x^7y-\frac{1}{8}x^6\)
b,\(\left(x-3y\right)\left(x^2+3xy+9y^2\right)=\left(x-3y\right)\left[x^2+x.3y+\left(3y\right)^2\right]\)
\(=x^3-\left(3y\right)^3=x^3-27y^3\)
\(\left(x^2-3\right)\left(x^4+3x^2+9\right)=\left(x^2-3\right)\left[\left(x^2\right)^2+3.x^2+3^2\right]\)
\(=\left(x^2\right)^3-3^3=x^6-27\)
B = (0,5x^2)^2 - 3.|0,5x^2+x| + 2,25 - 2,25
= ( |0,5x^2+x| - 1,5 ) ^2 - 2,25 >= -2,25
Dấu "=" xảy ra <=> |0,25x^2+x| = 1,5
<=> 0,5x^2+x = 1,5 hoặc 0,5x^2+x = -1,5
Đến đó bạn giải 2 pt đó để tìm x nha
Vậy Min của B = -2,25 <=> x=......