K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

A B C

Vì tam giác ABC cân có AH là đường cao

nên AH đồng thời là đường phân giác

\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)

Ta có \(AH\perp BC\)

Mà HD và HE lần lượt là các đường phân giác 

nêngócAHD=AHE

Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)

nên AD=AE

Chứng minh AE=EH( tự chứng minh)

Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau

nên AE=EH=DH=AD

Vậy AEDH là hình thoi

b) Chứng minh AE=EC

                         AD=DB

Aps dụng tính chất đường trung bình suy ra dpcm

19 tháng 9 2019
bạn ơi đề sai ak
19 tháng 9 2019

Mk sửa rồi đấy

19 tháng 9 2019

a, AH là đường cao của tam giác ABC (gt) 

Tam giác ABC vuông cân tại A (gt)

=> AH đồng thời là đường phân giác của tam giác ABC (đl)

=> góc HAB = 1/2 góc BAC (đl)

mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)

=> góc HAB = 90 : 2 = 45      (1)

HE là phân giác của góc CHA (gt)

=> góc EHA = 1/2 góc CHA (Đl)

mà góc CHA = 90 do AH là đường cao (gt)

=> góc EHA = 90 : 2 = 45    (2)

(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong

=> EH // AD (đl) 

xét tứ giác ADHE 

=> ADHE là hình thang

b, chứng minh đường trung bình

12 tháng 12 2023

chịu :))
 

a: Xét tứ giác ADHE có 

\(\widehat{EAD}=\widehat{ADH}=\widehat{AEH}=90^0\)

Do đó: ADHE là hình chữ nhật

13 tháng 10 2022

a: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ

nên ADHE là hình chữ nhật

=>DE=AH=6cm

b: Gọi O là giao của AH và DE

=>O là trung điểm chung của AH và DE
mà AH=DE

nên OA=OH=OD=OE

Ta có: góc OHD+góc MHD=90 độ

góc ODH+góc MDH=90 độ

mà góc OHD=góc ODH

nên góc MHD=góc MDH

=>ΔMHD cân tại M và góc MDB=góc MBD

=>ΔMBD cân tại M

=>MH=MB

=>M là trung điểm của HB

Cm tương tự, ta được N là trung điểm của HC

=>MN=1/2BC

d: \(AD\cdot AB=AH^2\)

\(AE\cdot AC=AH^2\)

Do đó: \(AD\cdot AB=AE\cdot AC\)

b) Ta có: \(\widehat{DBI}=\widehat{IBC}\)(gt)

mà \(\widehat{DIB}=\widehat{IBC}\)(hai góc so le trong, DI//BC)

nên \(\widehat{DBI}=\widehat{DIB}\)

hay ΔDIB cân tại D

Ta có: \(\widehat{EIC}=\widehat{ICB}\)(hai góc so le trong, IE//BC)

mà \(\widehat{ECI}=\widehat{ICB}\)(gt)

nên \(\widehat{EIC}=\widehat{ECI}\)

hay ΔEIC cân tại E

30 tháng 9

cảm ơn nha

 

16 tháng 12 2023

MMỉm đang cần rất gấp  giúp mỉm với

 

16 tháng 12 2023

loading...  a) Do MN // AB (gt)

⇒ MN // AE

Do ME // AC (gt)

⇒ ME // AN

Do AM là tia phân giác của ∠BAC (gt)

⇒ AM là tia phân giác của ∠EAN

Xét tứ giác AEMN có:

MN // AE (cmt)

ME // AN (cmt)

⇒ AEMN là hình bình hành

Mà AM là tia phân giác của ∠EAN (cmt)

⇒ AEMN là hình thoi

b) Do D là điểm đối xứng của M qua N (gt)

⇒ N là trung điểm của DM

∆ABC cân tại A có AM là tia phân giác của ∠BAC (gt)

⇒ AM cũng là đường trung trực của ∆ABC

⇒ M là trung điểm của BC

∆ABC có:

M là trung điểm của BC (cmt)

MN // AB (gt)

⇒ N là trung điểm của AC

Tứ giác ADCM có:

N là trung điểm của DM (cmt)

N là trung điểm của AC (cmt)

⇒ ADCM là hình bình hành

⇒ AD // CM

⇒ AD // BM

Do MN // AB (gt)

⇒ MD // AB

Tứ giác ADMB có:

MD // AB (cmt)

AD // BM (cmt)

⇒ ADMB là hình bình hành

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE

13 tháng 4 2016

xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)                  

Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)                            

1 và 2 suy ra DI/DK=EI/EK                                

suy ra điều phải chứng minh thôi bạn