Bài 5: Một công ty phát triển kĩ thuật số có một số thông báo hấp dẫn : Cần thuê một nhóm kĩ thuật viên hoàn thành dự án trong vòng 26 ngày, công việc rất khó khăn nhưng tiền công cho dự án rất thú vị. Nhóm kĩ thuật viên được nhận làm dự án sẽ được chọn hai phương án trả tiền công như sau:
PA1: Nhận tiền một lần và nhận tiền công trước với mức tiền 50 triệu đồng.
PA2: Ngày đầu nhận 1 đồng, ngày sau nhận gấp đôi ngày trước đó.
Theo em phương án nào có lợi hơn cho nhóm kĩ thuật vì sao?
Giải
Nếu nhận tiền theo phương án hai thì số tiền nhận được từ ngày đầu tiên tới ngày thứ 26 là các số thuộc dãy số:
1; 2; 4; 8; 16;...
20;21;22;23;...
Số tiền nhận được ngày thứ 26 là: 226-1 = 225
Tổng số tiền mà đội đó nhận được là:
A = 1 + 2 + 22 + 23+ ... + 225
2A = 2 + 22 + 23 + 24 + .. + 226
2A - A = (2 + 22 + 23 + 24 + .. + 226) - (1 + 2 +22 + 23 + ... + 225)
A = 2 + 22 + 23 + 24 + ... + 226 - 1 - 2 -22 - 23 - ... - 225
A = (226 - 1) + (2 - 2) + (22 - 22) + (23 - 23) + ..+ (225 - 225)
A = 226 - 1 + 0 +0 + 0+ ... +0
A = 226 - 1
A =67108863
vì 67 108 863 > 50 000 000 Vậy cách hai có lợi hơn cách một
Nếu theo phương án 2:
Ngày đầu nhận được 1 đồng
Ngày thứ hai nhận \(1.2=2^1\) đồng
Ngày thứ ba nhận \(1.2.2=2^2\) đồng
...
Theo quy tắc đó, ngày thứ 26 sẽ nhận được: \(2^{25}\) đồng
Do đó, tổng tiền nhóm nhận được theo phương án 2 là:
\(S=1+2+2^2+...+2^{25}\)
\(2S=2+2^2+2^3+...+2^{26}\)
\(2S-S=2^{26}-1\)
\(S=2^{26}-1=67\text{ }\text{ }108\text{ }863\) (đồng)
Do \(67\text{ }108\text{ }863>50\text{ }000\text{ }000\) nên nhận theo phương án 2 có lợi hơn