cho tổng a=5+52+3+...+539+540
chứng minh a chia hết cho 30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
a) A=3+32+33+34+35+36+....+328+329+330�=3+32+33+34+35+36+....+328+329+330
⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)
⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)
⇔A=3.13+34.13+....+328.13⇔�=3.13+34.13+....+328.13
⇔A=13(3+34+....+328)⋮13(dpcm)⇔�=13(3+34+....+328)⋮13(����)
b) A=3+32+33+34+35+36+....+325+326+327+328+329+330�=3+32+33+34+35+36+....+325+326+327+328+329+330
⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)
⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)
⇔A=3.364+....+325.364⇔�=3.364+....+325.364
⇔A=364(3+35+310+....+325)⇔�=364(3+35+310+....+325)
⇔A=52.7(3+35+310+....+325)⋮52(dpcm)
2) A=3+32+33+....+330�=3+32+33+....+330
⇔3A=3(3+32+33+....+330)⇔3�=3(3+32+33+....+330)
⇔3A=32+33+34+....+330+331⇔3�=32+33+34+....+330+331
⇔3A−A=(32+33+34+....+330+331)−(3+32+33+....+330)⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)
⇔2A=331−3⇔2�=331−3
⇔A=331−32⇔�=331−32
Vậy A không phải là số chính phương
Học tốt nha
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
Ta có: (a^5-a)= a(a^4-1)
= a(a^2-1)(a^2+1)
= a(a-1)(a+1)(a^2+1)
= a(a-1)(a+1)(a^2-4+5)
= a(a-1)(a+1)(a-2)(a+2) + 5a(a-1)(a+1)
Do a(a-1)(a+1)(a-2)(a+2) là tích 5 số tự nhiên liên tiếp => chia hết cho 2,3,5 => chia hết cho 2.3.5=30
5a(a-1)(a+1) chia hết cho 2,3,5 => chia hết cho 2.3.5=30
=> a^5-a chia hết cho 30
=> (a^5-a)+(b^5-b)+(c^5-c) chia hết cho 30
Mà a+b+c chia hết cho 30
=> a^5+b^5+c^5 chia hết cho 30
Ta có : A = 5 + 52 + 53 + ..... + 5100
= (5 + 52 )+ (53 + 54 ) + ..... + (599 + 5100)
= 30 + 52(5 + 52) + .... + 598(5 + 52)
= 30 + 52.30 + .... + 598.30
= 30(1 + 52 + ..... + 598) chia hết cho 30
\(A=5+5^2+5^3+...+5^{98}+5^{99}\)
\(A=5+\left(5^2+5^3\right)+...+\left(5^{96}+9^{97}\right)+\left(9^{98}+9^{99}\right)\)
\(A=5+5\left(5^1+5^2\right)+...+5^{95}\left(5^1+5^2\right)+5^{97}\left(5^1+5^2\right)\)
\(A=5+30\cdot5+30\cdot5^3+...+30\cdot5^{95}+30\cdot5^{97}\)
\(A=5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)
Vì \(30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)⋮5\); \(5\)không chia hết cho 30
Nên \(5+30\cdot\left(5+5^3+...+5^{95}+5^{97}\right)\)không chia hết cho 30
Vậy A không chia hết cho 30
\(A=5\left(1+5\right)+...+5^{11}\left(1+5\right)\)
\(=6\cdot\left(5+...+5^{11}\right)⋮30\)
A = 5 + 52 + 53 + ... + 539 + 540
Xét dãy số: 1; 2; ; 3;...; 40
Dãy số trên là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Só số hạng của dãy số trên là: (40 - 1) : 1 + 1 = 40 (số hạng)
Vì 40 : 2 = 20 nên ta nhóm hai số hạng liên tiếp của A vào thì khi đó:
A = (5 + 52) + (53 + 54) +...+ (539 + 540)
A = (5 + 52) + 52.(5 + 52) + ... + 538.(5 + 52)
A = (5 + 52).(1 + 52 + ... + 538)
A = 30.(1 + 52+ ... + 538) ⋮ 30 (đpcm)
15 tick cho minh di