Cho 4x-3y=7. Tìm gia trị nhỏ nhất của \(2x^2+5y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(4x-3y=7\) => \(4x=3y+7\)
=> \(x=\dfrac{3y+7}{4}\)
=> \(x^2=\left(\dfrac{3y+7}{4}\right)^2\)
=> \(2x^2=\dfrac{\left(3y+7\right)^2}{8}\) (1)
Thay (1) vào B ta có:
B = \(\dfrac{\left(3y+7\right)^2}{8}+5y^2\) = \(\dfrac{9y^2+42y+49+40y^2}{8}\)
= \(\dfrac{49y^2+42y+9+40}{8}\)
= \(\dfrac{\left(7y+3\right)^2}{8}+5\)
Vì \(\dfrac{\left(7y+3\right)^2}{8}\) \(\ge\) 0 => \(\dfrac{\left(7y+3\right)^2}{8}+5\) \(\ge\) 5
=> Dấu bằng xảy ra <=> \(\dfrac{\left(7y+3\right)^2}{8}\) = 0
<=> \(7y+3=0\) <=> \(y=\dfrac{-3}{7}\) => \(x=\dfrac{10}{7}\)
=> GTNN của B = 5 khi \(x=\dfrac{10}{7};y=\dfrac{-3}{7}\)
\(a^2+b^2+6ab+2=2a+3b\Rightarrow\left(a+b\right)^2-3\left(a+b\right)+2=-a\left(4b+1\right)\le0\)
\(\Rightarrow\left(a+b-1\right)\left(a+b-2\right)\le0\Rightarrow1\le a+b\le2\)
\(a^2+b^2+6ab+2=2a+3b\Rightarrow4ab=-\left(a+b\right)^2+2a+3b-2\)
\(-P=\dfrac{6a+5b+4ab+7}{a+b+1}=\dfrac{6a+5a+7-\left(a+b\right)^2+2a+3b-2}{a+b+1}\)
\(=\dfrac{-\left(a+b\right)^2+8\left(a+b\right)+5}{a+b+1}\)
Tới đây có thể giải theo lớp 9 (tách thành tích hoặc bình phương) hoặc làm theo lớp 12 (khảo sát hàm \(f\left(x\right)=\dfrac{-x^2+8x+5}{x+1}\) trên \(\left[1;2\right]\)). Cả 2 việc đều dễ dàng cả
\(-P=6-\dfrac{\left(x-1\right)^2}{x+1}=\dfrac{17}{3}+\dfrac{\left(3x-1\right)\left(2-x\right)}{3\left(x+1\right)}\)
a) Ta có:
\(A=2x^2-3x-7+4y^2-8y=2\left(x^2-2.x.\dfrac{3}{4}+\dfrac{9}{16}\right)+\left(2y\right)^2-2.2y.2+4-\dfrac{97}{8}\)\(\Leftrightarrow A=2\left(x-\dfrac{3}{4}\right)^2+\left(2y-2\right)^2-\dfrac{97}{8}\ge0+0-\dfrac{97}{8}=\dfrac{-97}{8}\)
Vậy \(A_{min}=\dfrac{-97}{8}\), đạt được khi và chỉ khi \(x=\dfrac{3}{4},y=1\)
D= 5x^2+8xy+5y^2-2x+2y
=4x^2+8xy+4y^2-2x+2y+y^2+x^2
=(2x+2y)^2+x^2-2*1/2x+1/4+y^2+2*1/2y+1/4-1/2
(2x+2y)^2+(x-1/2)^2+(y+1/2)^2-1/2>=-1/2
suy ra D>=-1/2 nên D có GTNN là -1/2
Ta có : 5D = 25x2 + 40xy + 25y2 - 10x + 10y
5D = (5x+ 4y - 1)2 + 9y2 + 18y - 1
5D = ( 5x + 4y - 1)2 + 9 (y + 1)2 - 2
D =\(\frac{1}{5}\). ( 5x + 4y - 1)2 + \(\frac{9}{5}\).( y + 1)2 - \(\frac{2}{5}\) \(\ge\)\(\frac{-2}{5}\)
Dấu "=" xảy ra khi y+1 = 0 \(\Leftrightarrow\)y = -1
5x + 4y - 1 = 0 \(\Leftrightarrow\)x=1
Vậy GTNN của D = \(\frac{-2}{5}\)khi x = 1 ; y = -1
C = 2x2 + 5y2 + 4xy - 4x + 2y + 7
= (x2 + 4xy + 4y2) + (x2 - 4x + 4) + (y2 + 2y + 1) + 2
= (x + 2y)2 + (x - 2)2 + (y + 1)2 + 1 >= 1
GTNN của C là 1
\(4x-3y=7\Leftrightarrow x=\frac{3y+7}{4}\)
Thay vào ta được :
\(2\cdot\left(\frac{3y+7}{4}\right)^2+5y^2\)
\(=\frac{9y^2+42y+49}{8}+\frac{40y^2}{8}\)
\(=\frac{49y^2+42y+49}{8}\)
\(=\frac{\left(7y\right)^2+2\cdot7y\cdot3+3^2+40}{8}\)
\(=\frac{\left(7y+3\right)^2+40}{8}\ge\frac{40}{8}=5\forall y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\frac{10}{7}\\y=-\frac{3}{7}\end{cases}}\)
thay y = \(\frac{4x-7}{3}\)vào A = 2x2 + 5y2 , ta được
9A = 98x2 - 280x + 245 = 2 . ( 7x - 10 )2 + 45 \(\ge\)45
\(\Rightarrow\)A \(\ge\)5
Vậy min A = 5 \(\Leftrightarrow x=\frac{10}{7};y=-\frac{3}{7}\)
Mình giải cơ bản mà mọi người cùng hiểu
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )
x = (7 + 3y)/4
Thế vào : 2( 7 + 3y)² / 16 + 5y²
= ( 7 + 3y)² / 8 + 5y²
= [( 7 + 3y)² + 40y² ] / 8
= ( 49 + 42y + 9y² + 40y² ) / 8
= ( 49 + 42y + 49y² ) / 8
= [ (7y)² + 2.7.3y + 9 + 40 ] / 8
= ( 7y + 3 )²/8 + 40/8
= (7y + 3)²/8 + 5
Ta có : (7y + 3)² ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 ≥ 0 , với mọi y thuộc |R
<=> (7y + 3)²/8 + 5 ≥ 5 , với mọi y thuộc |R
Dấu "=" xảy ra khi (7y + 3)² = 0 <=> 7y + 3 = 0<=> y = -3/7 => x = 10/7
Vậy giá trị nhỏ nhất của 2x² + 5y² là Amin = 5 khi (x ; y) = ( 10/7 ; -3/7 )