K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2021

Theo bài ra, ta có: a+b+c
Suy ra: 3(a+b+c)-3abc=0
Suy ra: -3abc=0
Tương đương: -3*(b+c)*(a+c)*(a+b)=0
Tương đương: -3* a^2+b^2+c^2=0
Tương đương: -3*0=0
Suy ra: nếu a+b+c=0 thì a3+b3+c3-3abc=0(đpcm)


 

1 tháng 11 2021

Sai rồi bạn ơi

 

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ? 

22 tháng 4 2016

Mình học lớp 7 nên chỉ làm được phần b, thôi

b, * Nếu x=1 thì: 

1+1=2

* Nếu x=2 thì:

2+ 1/2 >2

* Nếu x>2 

=> x + 1/x   >   2 ( vì 1/x là số dương )

Vậy x + 1/x >=2 (x>0)

22 tháng 4 2016

Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html

9 tháng 4 2017

áp dụng BDT cô si với 2 số dương ta có  a/b+b/a>=2

==> a/b+ 1 +b/a +1 >=4

==> (a+b)/a+(a+b)/b>=4

==>(a+b)(1/a+1/b)>=4

dấu "=" xảy ra khi a=b

30 tháng 4 2018

ta có

\(M=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=3+\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

Lại áp dụng bất đẳng thức : \(\frac{x}{y}+\frac{y}{x}\ge2\)vào vế trên ta được \(M\ge3+2+2+2=9\left(dpcm\right)\)

30 tháng 4 2018

Áp dụng bất đẳng thức Bunyakovsky , ta có 

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\frac{\sqrt{a}}{\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{b}}+\frac{\sqrt{c}}{\sqrt{c}}\right)^2=\left(1+1+1\right)^2=9\)