K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017

\(a⋮24\) hay  \(BC\left(24\right)=a\)

\(BC\left(24\right)=\left\{\pm24;\pm48;\pm72;\pm96;\pm120;\pm144;\pm168;...;\pm480\right\}\)

\(a⋮80\) hay \(BC\left(80\right)=a\)

\(BC\left(80\right)=\left\{\pm80;\pm160;\pm240;...;\pm480\right\}\)

mà a thỏa mãn \(100< a< 500\)

nên \(a\in\left\{\pm240;\pm480\right\}\)

vậy \(a\in\left\{\pm240;\pm480\right\}\)

19 tháng 11 2017

a chia hết cho 24, a chia hết cho 80 => a thuộc BC(24,80)

Ta có : 24 = 23.3

            80 = 24.5

=> BCNN(24,80) = 24.3.5 = 240

=> BC(24,80) = B(240) = {0 ; 240 ; 480 ; 720 ; ....}

Vì 100< a<500 => a = { 240 ; 480 }

19 tháng 10 2023

b là 12; a là 96

20 tháng 4 2022

ai giải giúp mình đi ạ!

2 tháng 5 2022

n=7 khi a=1,b=1

 

24 tháng 1 2021

Giả sử d = (a;b). Khi đó ta có:

\hept{a=mdb=nd;(m;n)=1[a;b]=mnd\hept{a=mdb=nd;(m;n)=1⇒[a;b]=mnd

Ta có: md+2nd=48  và  3mnd+d=114

md+2nd=48⇒d(m+2n)=48

3mnd+d=114⇒d(3mn+1)=114

Suy ra d∈ƯC(48,114)=(6;3;2;1)

Nếu d = 1, ta có: 3mn+1=114⇒3mn=113

Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 2 ta có: 3mn+1=57⇒3mn=56

Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 3 ta có: 3mn+1=38⇒3mn=37

Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.

Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6

Và m+2n=8

Suy ra m = 2, n = 3 hoặc m = 6, n = 1

Vậy a = 12, b = 36 hoặc a = 36, b = 6.

24 tháng 1 2021

Mik c.ơn nhaaa:)

29 tháng 11 2019

Không mất tính tổng quát. Giả sử: 0< a < b < c ; a, b, c là các số tự nhiên. Vì 1/ a + 1/b + 1/c  = 4/5 <1 => a; b ; c > 1

=> \(\frac{1}{a}>\frac{1}{b}>\frac{1}{c}\)

=> \(\frac{4}{5}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)

=> \(\frac{4}{5}< \frac{3}{a}\)

=> \(a=3\) hoặc  2 

TH1: Với a = 3

=> \(\frac{1}{3}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{b}+\frac{1}{c}=\frac{7}{15}< \frac{1}{2}\)

=> \(\frac{7}{15}=\frac{1}{b}+\frac{1}{c}< \frac{2}{b}\); b > 2

=> \(\frac{7}{15}< \frac{2}{b}\); b > 2

=>  b = 3; hoặc b = 4

+) Với b = 4 => \(\frac{1}{4}+\frac{1}{c}=\frac{7}{15}\)

=> \(\frac{1}{c}=\frac{13}{60}\)=> \(c=\frac{60}{13}\) loại vì c là số tự nhiên.

+) Với b = 3 => \(\frac{1}{3}+\frac{1}{c}=\frac{7}{15}\)

=> \(\frac{1}{c}=\frac{2}{15}\) loại vì c là số tự nhiên.

TH2: a = 2

=> \(\frac{1}{2}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\)

=> \(\frac{1}{b}+\frac{1}{c}=\frac{3}{10}< \frac{1}{3}\)

=> \(\frac{3}{10}=\frac{1}{b}+\frac{1}{c}< \frac{2}{b};b>3\)

=> \(\frac{3}{10}< \frac{2}{b};b>3\)

=> b = 4 hoặc b = 5 hoặc b = 6

+) Với b = 4 có: \(\frac{1}{4}+\frac{1}{c}=\frac{3}{10}\Rightarrow c=20\)( thử lại thỏa mãn)

+) Với b = 5  có: \(\frac{1}{5}+\frac{1}{c}=\frac{3}{10}\Rightarrow c=10\)( thử lại thỏa mãn)

+) Với b = 6 có: \(\frac{1}{6}+\frac{1}{c}=\frac{3}{10}\Rightarrow\frac{1}{c}=\frac{2}{15}\)loại

Vậy bộ 3 số tự nhiên cần tìm là : ( 2; 4; 20) ; ( 2; 5; 10 ) và các hoán vị.

2 tháng 12 2019

bang 3 day minh lam roi

10 tháng 5 2016

Mình sửa 3(a,b) thành 3.[a,b] hen 

\(a+2b=48\) => a chia hết cho 2; 144 chia hết cho 3, 3[a,b] chia hết cho 3 =>(a,b) chia hết cho 3 => a chia hết cho 3

=> a chia hết cho 2 và 3 mà (2,3)=1 => a chia hết cho 6 mà a<48 => a thuộc {6,12,18,24,30,36}

a

6

12

18

24

30

36

42

b

21

18

15

12

9

6

3

(a,b)

3

6

3

12

3

6

3

[a,b]

42

36

90

24

90

36

42

(a,b) + [a,b]

129

114

273

84

114

114

129