tìm x biết \(\sqrt{x-1}\)-2=23
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e) Ta có: \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{2}{3}\right\}\)
\(a,\dfrac{3}{\sqrt{12x-1}}\) xác định \(\Leftrightarrow12x-1>0\Leftrightarrow12x>1\Leftrightarrow x>\dfrac{1}{12}\)
\(b,\sqrt{\left(3x+2\right)\left(x-1\right)}\) xác định \(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}3x+2\ge0\\x-1\ge0\end{matrix}\right.\\\left[{}\begin{matrix}3x+2\le0\\x-1\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\\\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\le1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le-\dfrac{2}{3}\\x\ge1\end{matrix}\right.\)
\(c,\sqrt{3x-2}.\sqrt{x-1}\) xác định \(\Leftrightarrow\left[{}\begin{matrix}3x-2\ge0\\x-1\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge\dfrac{2}{3}\\x\ge1\end{matrix}\right.\) \(\Leftrightarrow x\ge1\)
\(d,\sqrt{\dfrac{-2\sqrt{6}+\sqrt{23}}{-x+5}}\) xác định \(\Leftrightarrow-x+5>0\Leftrightarrow x< 5\)
22: \(x+2\sqrt{x-1}=\left(\sqrt{x-1}+1\right)^2\)
24: \(-6x+5\sqrt{x}+1=\left(\sqrt{x}-1\right)\left(-6\sqrt{x}-1\right)\)
21: \(x^2-3x\sqrt{y}+2y\)
\(=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
23: \(\sqrt{x^3}-2\sqrt{x}-x\)
\(=x\sqrt{x}-2\sqrt{x}-x\)
\(=\sqrt{x}\left(x-\sqrt{x}-2\right)\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)\)
Lời giải:
ĐKXĐ: $x\geq 1$
PT $\Leftrightarrow \sqrt{(x-1)+2\sqrt{x-1}+1}-\sqrt{(x-1)-2\sqrt{x-1}+1}=2$
$\Leftrightarrow \sqrt{(\sqrt{x-1}+1)^2}-\sqrt{(\sqrt{x-1}-1)^2}=2$
$\Leftrightarrow |\sqrt{x-1}+1|-|\sqrt{x-1}-1|=2$
Nếu $2\geq x\geq 1$ thì:
$\sqrt{x-1}+1+(1-\sqrt{x-1})=2$
$\Leftrightarrow 2=2$ (luôn đúng)
Nếu $x>2$ thì: $\sqrt{x-1}+1+(\sqrt{x-1}-1)=2$
$\Leftrightarrow 2\sqrt{x-1}=2$
$\Leftrightarrow x-1=1$
$\Leftrihgtarrow x=2$ (loại)
Vậy $2\geq x\geq 1$
$
\(\sqrt{x-1}-2=23\)
\(\sqrt{x-1}=23+2\)
\(\sqrt{x-1}=25\)
\(\sqrt{x-1}=625\)
\(x-1=625\)
\(x=625+1\)
\(x=626\)
\(\Rightarrow\sqrt{x-1}=25\Rightarrow x+1=25^2=625\)
\(\Rightarrow x=624\)