K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bạn ơi hình như đề phải là n3-13n

18 tháng 11 2017

 Câu trả lời hay nhất:  Đặt n² - n + 13 = k² 
<--> 4n² - 4n + 52 = 4k² 
<--> (4n² - 4n + 1) + 51 = 4k² 
<--> (2n - 1)² + 51 = 4k² 
<--> 4k² - (2n - 1)^2 = 51 
<--> (2k - 2n + 1)(2k + 2n - 1) = 51 
<--> (2k - 2n + 1)(2k + 2n - 1) = 51.1 
Vì 2k - 2n + 1 và 2k + 2n - 1 là những số nguyên nên: 
{2k - 2n + 1 = 51 
{2k + 2n - 1 = 1 
hoặc: 
{2k - 2n + 1 = - 51 
{2k + 2n - 1 = - 1 
Giải các hệ PT trên ta tìm được k và n (cần tìm)

26 tháng 6 2016

n^3 - 13n = n^3 - n -12n= n(n^2-1) - 6.2n= n(n-1)(n+1) - 6.2n 
Ta có n(n-1)(n=1) là tích 3 số nguyên nên chia hết cho 2, 3. Mà 2 và 3 nguyên tố cùng nhau. Vậy n(n-1)(n+1) chia hết cho 2x3=6; Do đó n^3-13n= n(n-1)(n=1) -6.2n chia hết cho 6

28 tháng 6 2016

sao biết : n(n^2-1)= n(n-1)(n+1)

19 tháng 10 2019

Ta có :

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n-1\right)\left(n+1\right)-12n\)

Với mọi số nguyên n ta có :

+) \(n\left(n-1\right)\left(n+1\right)⋮6\) (tích của 3 số nguyên liên tiếp )

+) \(12n⋮6\)

\(\Leftrightarrow n\left(n-1\right)\left(n+1\right)-12n⋮6\)

\(\Leftrightarrow n^3-12n⋮6\left(đpcm\right)\)

16 tháng 3 2020

Ta có:n-13n=(n3-n)-12n=n(n2-1)-12n=n(n-1)(n+1)-6.(2n)

Mà n(n-1)(n+1) là tích của 3 số tự nhiên liên tiếp nên chia hết cho 2 và 3\(\Rightarrow\)n(n-1)(n+1) chia hết cho 6

Lại có 6.(2n) chia hết cho 6

Suy ra:n(n-1)(n+1)-6.(2n) chia hết cho 6

Do đó:n3-13n chia hết cho 6.

30 tháng 3 2018

Ta có :\(n^3-13n\)

\(=\left(n^3-n\right)-12n\)

\(=n\left(n^2-1\right)-6\left(2n\right)\)

\(=\left(n-1\right)n\left(n+1\right)-6\left(2n\right)\)

Vì (n-1);n;n+1 là ba số tự nhiên liên tiếp =>(n-1)n(n+1)\(⋮\)2 và 3;

=>(n-1)n(n+1)\(⋮\)6

Mà 6(2n)\(⋮\)6

=>(n-1)n(n+1)-6(2n)\(⋮6\)

\(\Rightarrow n^3-13n⋮6\)

5 tháng 10 2017

Ta có: n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(2n+5-n-3)=n(n+1)(n+2)

Do n, n+1 và n+2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n+n+1+n+2=3n+3=3(n+1) => Luôn chia hết cho 3

=> n(n+1)(2n+5)-n(n+1)(n+3)=n(n+1)(n+2) luôn chia hết cho 6

12 tháng 7 2018

Ta có:

 n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(2n + 5 - n - 3) = n(n + 1)(n + 2)

Do n, n + 1 và n + 2 là 3 số tự nhiên liên tiếp nên chắc chắn có 1 số chẵn => chia hết cho 2

Tổng các số hạng là: n + n + 1 + n + 2 = 3n + 3 = 3(n + 1) => chia hết cho 3

=>  n(n + 1)(2n + 5) – n(n + 1)(n + 3) = n(n + 1)(n + 2) => chia hết cho 6.

Vậy n(n + 1)(2n + 5) – n(n + 1)(n + 3) chia hết cho 6.

4 tháng 7 2016

\(n^2+13n=n^2+6n+7n+9-9=\left(n^2+6n+9\right)+\left(7n-9\right)\)

\(=\left(n^2+3n+3n+9\right)+\left(7n-9\right)=\left[n\left(n+3\right)+3\left(n+3\right)\right]+\left(7n-9\right)=\left(n+3\right)^2+\left(7n-9\right)\)

Mà (n+3)2 chia hết cho n+3

=>7n-9 chia hết cho n+3

=>7(n+3)-30 chia hết cho n+3

=>-30 chia hết cho n+3 (vì 7(n+3) chia hết cho n+3))

=>n+3 \(\in\) Ư(-30)={-30;-15;-10;-6;-5;-3;-2;-1;;1;2;3;5;6;10;15;30}

=>n \(\in\) {-33;-18;-13;-9;.......27}

Vậy..............

4 tháng 7 2016

n2+13n chia hết cho n+3

=>n2+3n+10n+30-30 chia hết cho n+3

=>n.(n+3)+10.(n+3)-30 chia hết cho n+3

=>(n+10).(n+3)-30 chia hết cho n+3

Mà (n+10).(n+3) chia hết cho n+3

=>30 chia hết cho n+3

=>n+3\(\in\){-30;-15;-10;-6;-5;-3;-2;-1;1;2;3;5;6;10;15;30}

=>n\(\in\){-33;-18;-13;-9;-8;-6;-5;-4;-2;-1;0;2;3;7;12;27}

26 tháng 10 2022

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6