Tính số cạnh của 1 đa giác đều, biết mỗi góc bằng 135 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số đường chéo của đa giác đều n cạnh là \(\dfrac{n\left(n-3\right)}{2}\)
Số đường chéo bằng 33 số cạnh
\(\Rightarrow\dfrac{n\left(n-3\right)}{2}=33n\Rightarrow n\left(n-3\right)=66n\\
\Rightarrow n-3=66\\
\Rightarrow n=69\)
Suy ra đa giác đều đó có 69 cạnh
Số đo mỗi góc là \(\dfrac{180\cdot33+360}{69}\approx91,3\)
Ta có: ( n − 2 ) .180 0 n = 120 0 . Tìm được n = 6 Þ số đường chéo là 9 đường chéo
Gọi số cạnh là n
Ta có công thức tính mỗi góc của đa giác đều n cạnh là :
\(\frac{\left(n-2\right).180^0}{n}\)
Đa giác đều có số đường chéo bằng số cạnh
\(\Rightarrow\)Đa giác đều đó là tam giác đều và tổng số đo mỗi góc là \(60^o\)
Ta có: góc trong - góc ngoài =140
mà góc trong + góc ngoài = 180
=> góc trong - góc ngoài + góc trong + góc ngoài = 140 + 180
=> 2.góc trong =320
=> góc trong = 160
Gọi số cạnh là n
\(\frac{\left(n-2\right)180}{n}=160\)
\(\Rightarrow180n-360=160n\)
\(\Rightarrow180n-160n=360\)
\(\Rightarrow20n=360\)
\(\Rightarrow n=18\)
Vậy đa giác đều này có 18 cạnh
Ta có: góc trong - góc ngoài =140
mà góc trong + góc ngoài = 180
=> góc trong - góc ngoài + góc trong + góc ngoài = 140 + 180
=> 2.góc trong =320
=> góc trong = 160
Gọi số cạnh là n
\frac{\left(n-2\right)180}{n}=160
\Rightarrow180n-360=160n
\Rightarrow180n-160n=360
\Rightarrow20n=360
\Rightarrow n=18
Vậy đa giác đều này có 18 cạnh
Đề bài thâm vãi :")
Cách tính góc trong 1 tam giác đều là: n - cạnh
Theo đề bài ta có: \(\frac{\left(n-2\right).180^0}{n}:\frac{\left(m-2\right).180^0}{m}=5:7\) \(\left(ĐK:n\ge3;m\ge3;n\in Z;m\in Z\right)\)
\(\Rightarrow7\left(n-2\right)m=5\left(m-2\right)n\)
\(\Rightarrow nm-7m+5n=0\)
\(\Rightarrow m\left(n-7\right)+5\left(n-7\right)=35\)
\(\Rightarrow\left(m+5\right)\left(n-7\right)=35\)
Ta có: \(m\ge3\)suy ra \(m+5\ge8\)
Nên số 35 được phân tích thành 1.35 hoặc 7 - n = 1 và m + 5 = 35
Vậy n = 6 và m = 30
Tổng số đo các góc ngoài của đa giác bằng \(360^o\)
Số đo một góc trong của hai đa giác đều là :
\(468^o-360^o=108^o\)
Gọi n là số cạnh của đa giác đều . Ta có số đo của mỗi đa giác đều bằng \(\frac{\left(n-2\right).180}{n}\)
\(=\frac{\left(n-2\right).180^o}{n}\)\(=108^o=180^o.n-360^o=108^o.n=72n=360^o=n=5\)
Vậy \(n=5\)
Gọi số cạnh của đa giác đều là n
=> Số đo góc ở tâm với 1 cạnh tương ứng là: 360/n (độ)
=> Số đo mỗi góc ở đỉnh là: \(180-\frac{360}{n}=135\) <=> \(\frac{360}{n}=45\)
=> n=360:45 => n=8
Đáp số: Số cạnh của đa giác đều đó là 8 (cạnh)