Giai pt nghiệm nguyên dương : x^3-y^3-z^3=3xyz và x^2=2.(y+z)
Ai làm nhanh và đúng nhất mk tick cho ; đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1...Chia cả hai vế cho xyz ta được
3xy/xyz + 3yz/xyz + 3zx/xyz = 4xyz/xyz
<=>3/x + 3/y + 3/z = 4
<=>1/x + 1/y + 1/z = 4/3
Vì x,y,z bình đẳng nên giả sử 0<x<=y<=z
+nếu x>=4=> y>=4;z>=4
=> 1/x + 1/y + 1/z <= 1/4 + 1/4 + 1/4 =3/4 < 4/3 => pt vô nghiệm
+nếu x=1 => 1+1/y+1/z=4/3
<=> 1/y+1/z=1/3
<=> 3(y+z)=yz
<=> 3y+3z-yz=0
<=> 3y-yz+3z-9=-9
<=> y(3-z)-3(3-z)=-9
<=> (3-z)(3-y)=9
Vì y,z nguyên dương nên (3-y),(3-z) nguyên dương
mà 9=3*3=1*9=9*1
==>3-z=3 và 3-y=3 => z=0 và y=0 (loại vì y,z nguyên dương)
+nếu x=2 => 1/2+1/y+1/z=4/3
<=> 1/y+1/z=5/6
<=> 6(y+z)=5yz
<=> 6y+6z-5yz=0
<=> 30y-25yz+30z-36=-36
<=> 5y(6-5z)-6(6-5z)=-36
<=> (5z-6)(5y-6)=36
Vì y,z nguyên dương nên (5y-6),(5z-6) nguyên dương
mà 36=6*6=2*18=18*2=3*12=12*3=4*9=9*4
Giải tương tự phần trên ta được
y=2,z=3 hoặc y=3,z=2
+nếu x=3 => 1/3+1/y+1/z=4/3
<=> 1/y+1/z=1
Giải tương tự phần trên ta được y=z=2
Vậy (x;y;z)=(2;2;3);(2;3;2);(3;2;2)
Đây là bài gần giống nhé
b) Do \(13x^2\ge0\)nên \(24y^2\le2015\)
\(\Rightarrow y^2\le83\)
Đến đây xét các trường hợp của y là được
a) Ta có: \(y^2=1+x+x^2+x^3+x^4\)
\(\Leftrightarrow4y^2=4+4x+4x^2+4x^3+4x^4\)
\(\Rightarrow4x^4+4x^3+x^2< 4y^2\le4x^4+x^2+4+4x^3+8x^2+4x\)
\(\Rightarrow\left(2x^2+x\right)^2< 4y^2\le\left(2x^2+x+2\right)^2\)
\(\Rightarrow\orbr{\begin{cases}4y^2=\left(2x^2+x+1\right)^2\\4y^2=\left(2x^2+x+2\right)^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+1\right)^2\\4x^4+4x^3+4x^2+4x+4=\left(2x^2+x+2\right)^2\end{cases}}\)
đến đây xét từng trường hợp là ra
cục than
úi nhầm câu cho xin lỗi