K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

Đặt \(\frac{x}{2}=\frac{y}{4}=k\)=> \(\hept{\begin{cases}x=2k\\y=4k\end{cases}}\Rightarrow\hept{\begin{cases}x^2=4k^2\\y^2=16k^2\end{cases}}\)=> x2.y2 = 64k4

Mà theo đề bài thì x2.y2 = 2 nên 64k4 = 2

                                            => k4 = \(\frac{1}{32}\)???

                          

mình cho kq của bài bn huy .bn cứ nối tiếp là xong

\(\Leftrightarrow k=\frac{1}{4}\)

8 tháng 8 2019

đề sai sai

2 tháng 6 2019

bạn sai ở hai chỗ: 5x2.y4: 10.x2.y= (1/2)y3

                                    5.52.34.3:10.52.3= 13,5 và (1/2).33=13,5

2 tháng 6 2019

Cảm ơn nhiều nha!

NV
12 tháng 9 2021

Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)

\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được

12 tháng 9 2021

Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!

a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)

b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)

c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)

d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)

29 tháng 6 2019

a) x²+4xy+4y² b)x(9-x²) = 9x-x³ c)25-10x+x² d)9+6y+x²

AH
Akai Haruma
Giáo viên
30 tháng 11 2023

Lời giải:

Đặt $\frac{x}{5}=\frac{y}{-3}=\frac{z}{2}=k\Rightarrow x=5k; y=-3k; z=2k$
Khi đó:

$x+2y-3z=10$

$\Rightarrow 5k+2(-3k)-3(2k)=10$

$\Rightarrow 5k-6k-6k=10$

$\Rightarrow -7k=10\Rightarrow k=\frac{-10}{7}$

$x=5k=\frac{-50}{7}; y=-3k=\frac{30}{7}; z=2k=\frac{-20}{7}$

25 tháng 12 2024

5+2*(-3)-(-3*2)

5+(-6)-6

-1-6

=-7 

 

19 tháng 12 2016

Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)

ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)

Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).

Trường hợp 1: \(x-2y=1\)

Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)

Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)

Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)

Tới đây chắc bạn giải được rồi đó.

19 tháng 12 2016

Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).

Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).

Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).

Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\)\(x_2=2y-2-3=2y-5\).

Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).

Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.