Giải giúp mình bài này,mk thấy đề bải hơi sai sai
tìm x,y biết
x/2=y/4 và x^2y^2=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn sai ở hai chỗ: 5x2.y4: 10.x2.y= (1/2)y3
5.52.34.34 :10.52.3= 13,5 và (1/2).33=13,5
Đề bài sai nhé, từ giả thiết chỉ xác định được \(x+y=0\Rightarrow y=-x\)
\(\Rightarrow A=4x^2-x^2+x^2+15=4x^2+15\) ko rút gọn được
Nguyễn Việt Lâm Giáo viên, bn có thể sửa đề bài cho mk được không ạ??? Cám ơn bn nhiều lắm lắm!!!
a) \(\left(x+2y\right)^2=x^2+2.x.2y+\left(2y\right)^2=x^2+4xy+4y^2\)
b) \(\left(3-x\right).\left(3+x\right)=9+3x-3x-x^2=9-x^2=3^2-x^2\)
c) \(\left(5-x\right)^2=5^2-2.5.x+x^2=25-10x+x^2\)
d) \(\left(3+y\right)^2=3^2+2.3.y+y^2=9+6y+y^2\)
Lời giải:
Đặt $\frac{x}{5}=\frac{y}{-3}=\frac{z}{2}=k\Rightarrow x=5k; y=-3k; z=2k$
Khi đó:
$x+2y-3z=10$
$\Rightarrow 5k+2(-3k)-3(2k)=10$
$\Rightarrow 5k-6k-6k=10$
$\Rightarrow -7k=10\Rightarrow k=\frac{-10}{7}$
$x=5k=\frac{-50}{7}; y=-3k=\frac{30}{7}; z=2k=\frac{-20}{7}$
Khai triển và phân tích nhân tử \(\left(x+2\right)^2+4\left(y-1\right)^2=4xy+13\)
ta có pt sau đây \(\left(x-2y-1\right)\left(x-2y+5\right)=0\)(***)
Nhận xét: \(x^2-xy-2y^2=\left(x+y\right)\left(x-2y\right)\).
Trường hợp 1: \(x-2y=1\)
Pt sau trở thành \(\sqrt{\frac{3y+1}{y+1}}+\sqrt{3y+1}=\frac{2}{\sqrt{\left(y+1\right)\left(3y+1\right)}}\)
Đặt \(a=\sqrt{3y+1},b=\sqrt{y+1}\)
Ta có hệ: \(\hept{\begin{cases}\frac{a}{b}+a=\frac{2}{ab}\\a^2-3b^2=-2\end{cases}}\)
Tới đây chắc bạn giải được rồi đó.
Hừm. Mình nghĩ mình nên giải thích cho bạn cách phân tích (***).
Lúc khai triển pt đầu ra ta có: \(x^2+2\left(2-2y\right)x+4y^2-8y-5=0\).
Coi như đây là pt ẩn \(x\), ta tính \(\Delta'=\left(2-2y\right)^2-\left(4y^2-y-5\right)=9\).
Pt có 2 nghiệm: \(x_1=2y-2+3=2y+1\), \(x_2=2y-2-3=2y-5\).
Theo hệ quả định lí Bezout ("Nếu đa thức có nghiệm \(x=a\) thì khi phân tích thành nhân tử sẽ có nhân tử \(x-a\)), ta có các phân tích \(\left(x-2y-1\right)\left(x-2y+5\right)\).
Đây chỉ là phần làm nháp, bạn không cần trình bày vào bài.
Đặt \(\frac{x}{2}=\frac{y}{4}=k\)=> \(\hept{\begin{cases}x=2k\\y=4k\end{cases}}\Rightarrow\hept{\begin{cases}x^2=4k^2\\y^2=16k^2\end{cases}}\)=> x2.y2 = 64k4
Mà theo đề bài thì x2.y2 = 2 nên 64k4 = 2
=> k4 = \(\frac{1}{32}\)???
mình cho kq của bài bn huy .bn cứ nối tiếp là xong
\(\Leftrightarrow k=\frac{1}{4}\)