cho tam giác ABC cân tại A vẽ AH vuông góc BC tại H, HE vuông góc AB tại E, HF vuông góc AC tại F
a) c/m AE=AF
b)CMR EF//BC
2.
cho tam giác ABC, M là trung điểm BC. CMR: Đường cao BE của tam giác ABM và đường cao CF của tam giác ACM bằng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến
a, xét tam giác ABH và tam giác ACH có AH chung
góc AHC = góc AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
=> tam giác ABH = tam giác ACH (ch-cgv)
b, ta giác ABH = tam giác ACH (câu a)
=> HB = HC (đn)
xét tam giác BHF và tam giác CHE có : góc BFH = góc CEH = 90
góc ABC = góc ACB do tam giác ABC cân tại A (gt)
=> tam giác BHF = tam giác CHE (ch-gn)
=> BF = CE (đn)
AB = AC (câu a)
BF + FA = AB
CE + AE = AC
=> FA = AE
=> tam giác AFE cân tại A (đn)
c, tam giác AFE cân tại A (Câu b)
=> góc AFE = (180 - góc BAC) : 2 (tc)
tam giác ABC cân tại A (gt) => góc ABC = (180 - góc BAC) : 2 (tc)
=> góc AFE = góc ABC mà 2 góc này đồng vị
=> FE // BC (định lí)
a)xét tam giác ABM và tam giác DCM có:
BN=CM(GT)
góc BMA=góc CMD(đđ)
AM-DM(GT)
\(\Rightarrow\)tam giác ABM=tam giác DCM(c.g.c)
b)theo câu a: tam giác ABM=tam giác DCM
\(\Rightarrow\)góc BAM= góc MDC(2 góc tương ứng)
mà đây là cặp góc so le trong
\(\Rightarrow\)AB//CD
\(\Rightarrow\)góc BAC= góc ACD=90 độ\(\Rightarrow\)CD \(\perp\)AC
c) xét tam giác AHC và tam giác EHC có:
AH=EH(GT)
góc AHC=góc EHC=90 độ
HC chung
\(\Rightarrow\)tam giác AHC = tam giác EHC(c.g.c)
\(\Rightarrow\)CA=CE(2 cạnh tương ứng)
\(\Rightarrow\)tam giác CAE cân tại C
Bài này học rồi
mở vở ra lật lại coi rồi làm