(2x+4) (4x+8)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|2x+4\right|+\left|4x+8\right|=0\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|+2.\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|\left(1+2\right)=0\)
=> |2x + 4| = 0
=> 2x + 4 = 0
=> 2x = -4
=> x = -2
1. Đề đúng phải là thế này: \(\left|2x+4\right|+\left|4x+8\right|=0\)
\(\Rightarrow\left|2x+4\right|=\left|4x+8\right|=0\)
\(\Rightarrow2x+4=4x+8=0\)
\(\Rightarrow x=-\frac{4}{2}=-\frac{8}{4}\)
\(\Rightarrow x=-2\)
2. Sửa lại đề : \(\left|x-5\right|-\left|x-7\right|=0\)
\(\Rightarrow\left|x-5\right|=\left|x-7\right|\)
\(\Rightarrow\orbr{\begin{cases}x-5=x-7\\x-5=-\left(x-7\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}-5=-7\\x-5=-x+7\end{cases}}\)
( Loại trường hợp 1)
\(\Rightarrow2x=12\)
\(\Rightarrow x=6\)
3. \(\left|x+8\right|-\left|2x+2\right|=0\)
\(\Rightarrow\left|x+8\right|=\left|2x+2\right|\)
\(\Rightarrow\orbr{\begin{cases}x+8=2x+2\\x+8=-\left(2x+2\right)\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=8\\x+8=-2x-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\3x=-10\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=-\frac{10}{3}\end{cases}}\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
b)x2-2x+1=4
⇔(x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
c)x2-4x+4=9
⇔ (x-2)2=9
\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
d)4x2-4x+1=4
⇔ (2x-1)2=4
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-3}{2}\end{matrix}\right.\)
e)x2-2x-8=0
⇔ x2-4x+2x-8=0
⇔ x(x-4)+2(x-4)=0
⇔(x-4)(x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
f)9x2-6x-8=0
⇔ 9x2-12x+6x-8=0
⇔ 3x(3x-4)+2(3x-4)=0
⇔ (3x-4)(3x+2)=0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
2:
a: =>2x^2-4x-2=x^2-x-2
=>x^2-3x=0
=>x=0(loại) hoặc x=3
b: =>(x+1)(x+4)<0
=>-4<x<-1
d: =>x^2-2x-7=-x^2+6x-4
=>2x^2-8x-3=0
=>\(x=\dfrac{4\pm\sqrt{22}}{2}\)
`4x-8+(4-2x)/(x^2+1)=0`
`ĐK:x in RR`
`<=>(4x-8)(x^2+1)+4-2x=0`
`<=>4x^3+4x-8x^2-8+4-2x=0`
`<=>4x^3-8x^2+2x-4=0`
`<=>4x^2(x-2)+2(x-2)=0`
`<=>(x-2)(4x^2+2)=0`
Vì `4x^2+2>=2>0`
`=>x-2=0`
`<=>x=2`
Vậy pt có tập nghiệm `S={2}`
`(2x + 4) (4x + 8) = 0`
`<=> 2(x+2) . 4(x+2) = 0`
`<=> 8 . (x+2)^2 = 0`
`<=> (x+2)^2 = 0`
`<=> x + 2 = 0`
`<=> x = -2`
Vậy ....
`(2x + 4)(4x + 8) = 0`
`=> 2(x + 2). 4. (x + 2) = 0`
`=> (2 . 4)(x + 2) = 0`
`=> 8(x+2)=0`
`=> x+2=0`
`=>x=0-2`
`=>x=-2`
Vậy: `S={-2}`