1/5x3/4+1/5x5/4-1/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x = 4 vào A ta được:
5.4⁵ - 5.4⁴ + 5.4³ - 5.4² + 5.4 - 1
= 5.1024 - 5.256 + 5.64 - 5.16 + 5.4 - 1
= 5120 - 1280 + 320 - 80 + 20 - 1
= 4099
x=4
=>x+1=5
A=(x+1)x^5 -(x+1)x^4+(x+1)x^3-(x+1)x^2+(x+1)x-1
=x^6+x^5-x^5-x^4+x^4+x^3-x^3-x^2+x^2-x+1
=x^6-x-1
=4^6-4-1
=4091
\(a,A=5\cdot4^5-5\cdot4^4+5\cdot4^3-5\cdot4^2+5\cdot4+1\\ A=4^4\left(20-5\right)+4^2\left(20-5\right)+\left(20-5\right)\\ A=15\left(4^4+4^2+1\right)=15\cdot273=4095\)
\(b,x=7\Leftrightarrow x+1=8\\ \Leftrightarrow B=x^{2006}-\left(x+1\right)x^{2005}+\left(x+1\right)x^{2004}-...+\left(x+1\right)x^2-\left(x+1\right)x-5\\ B=x^{2006}-x^{2006}-x^{2005}+x^{2005}+x^{2004}-...+x^3+x^2-x^2-x-5\\ B=-x-5=-12\)
\(\left(5x^5y^2z+\dfrac{1}{2}x^4y^2z^3-2xy^3z^2\right):\dfrac{1}{4}xy^2z\\ =\left(5:\dfrac{1}{4}\right).\left(x^5:x\right).\left(y^2:y^2\right).\left(z:z\right)+\left(\dfrac{1}{2}:\dfrac{1}{4}\right).\left(x^4:x\right).\left(y^2:y^2\right).\left(z^3:z\right)-\left(2:\dfrac{1}{4}\right).\left(x:x\right).\left(y^3:y^2\right).\left(z^2:z\right)\\ =20x^4+2x^3z^2-8yz\)
a) \(\dfrac{2}{5}+\dfrac{4}{5}\times\dfrac{5}{2}\)
\(=\dfrac{2}{5}+\dfrac{4\times5}{5\times2}\)
\(=\dfrac{2}{5}+\dfrac{4}{2}\)
\(=\dfrac{2}{5}+2\)
\(=\dfrac{2}{5}+\dfrac{10}{5}\)
\(=\dfrac{12}{5}\)
b) \(\dfrac{2008}{2009}-\dfrac{2009}{2008}+\dfrac{1}{2009}+\dfrac{2007}{2008}\)
\(=\left(1-\dfrac{1}{2009}\right)-\left(1+\dfrac{1}{2008}\right)+\dfrac{1}{2009}+\left(1-\dfrac{1}{2008}\right)\)
\(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=\left(1-1+1\right)-\left(\dfrac{1}{2009}-\dfrac{1}{2009}\right)-\left(\dfrac{1}{2008}+\dfrac{1}{2008}\right)\)
\(=1-\dfrac{2}{2008}\)
\(=\dfrac{2008}{2008}-\dfrac{2}{2008}\)
\(=\dfrac{2006}{2008}\)
\(=\dfrac{1003}{1004}\)
a: =2/5+4/2
=2/5+2
=12/5
b: \(=1-\dfrac{1}{2009}-1-\dfrac{1}{2008}+\dfrac{1}{2009}+1-\dfrac{1}{2008}\)
\(=1-\dfrac{2}{2008}=1-\dfrac{1}{1004}=\dfrac{1003}{1004}\)
a) \(\dfrac{2}{5}\cdot\dfrac{1}{7}+\dfrac{2}{5}\cdot\dfrac{5}{7}+\dfrac{2}{5}\)
\(=\dfrac{2}{5}\left(\dfrac{1}{7}+\dfrac{5}{7}+1\right)\)
\(=\dfrac{2}{5}\cdot\dfrac{13}{7}=\dfrac{26}{35}\)
b) \(\dfrac{1}{5}+\dfrac{2}{8}+\dfrac{4}{5}+\dfrac{7}{8}-\dfrac{1}{8}\)
\(=\left(\dfrac{1}{5}+\dfrac{4}{5}\right)+\left(\dfrac{2}{8}+\dfrac{7}{8}-\dfrac{1}{8}\right)\)
\(=1+1=2\)
c)\(\dfrac{24}{36}\cdot\dfrac{10}{12}\cdot36\)
\(=\dfrac{24\cdot10\cdot36}{36\cdot12}=\dfrac{12\cdot2\cdot10\cdot36}{12\cdot36}\)
\(=2\cdot10=20\)
\(2+\dfrac{3}{4}=\dfrac{8}{4}+\dfrac{3}{4}=\dfrac{11}{4}\\ \dfrac{5}{7}:6=\dfrac{5}{7}\times\dfrac{1}{6}=\dfrac{5}{42}\\ 2-\dfrac{3}{5}=\dfrac{10}{5}-\dfrac{3}{5}=\dfrac{7}{5}\\ \dfrac{5}{9}\times\dfrac{2}{7}=\dfrac{10}{63}\)
\(\dfrac{1}{5}\times\dfrac{3}{4}+\dfrac{1}{5}\times\dfrac{5}{4}-\dfrac{1}{5}\\ =\dfrac{1}{5}\times\left(\dfrac{3}{4}+\dfrac{5}{4}-1\right)\\ =\dfrac{1}{5}\times\left(2-1\right)\\ =\dfrac{1}{5}\times1\\ =\dfrac{1}{5}\)
`1/5 xx 3/4 + 1/5 xx 5/4 - 1/5`
`= 1/5 xx (3/4 + 5/4 - 1) `
`= 1/5 xx (8/4 - 1) `
`= 1/5 xx (2 - 1) `
`= 1/5 xx 1`
`= 1/5`