giúp tui với ạ, chiều mình nộp rồi :((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Bài 19:
Chu vi hình vuông là: \(\left(12+6\right)\cdot2=36\left(cm\right)\)
Độ dài cạnh hình vuông là 36/4=9(cm)
Diện tích hình vuông là \(9^2=81\left(cm^2\right)\)
Bài 20:
Độ dài đường cao là \(\dfrac{160}{4}=40\left(m\right)\)
Diện tích miếng đất là: \(60\cdot40=2400\left(m^2\right)=0,24\left(ha\right)\)
Khối lượng ngô thu hoạch được là:
\(0,24:3\cdot13,5=1,08\left(tấn\right)=1080\left(kg\right)\)

1. hard enough
2. well enough
3. warm enough
4. rich enough
5. enough money
6. enough time
7. strong enough
8. enough French
9. far enough
10. enough chairs
(P/s: nãy h ngồi làm mợt lắm á , tick cho tui nghen (~ ̄▽ ̄)~)

20. B 21. A 22. C.-. 23. B 24. D 25. B 26. C 27. B
*Writing
39. Took
40. => My son is keen on reading books than playing computer games.
41. => Tennis player Novak Djokovic is skillful.
42. I went to Da Nang last summer vacation.
43. All children shouldn't spend much time on these video games.
44. Martin got a bad toothache because he forgot to brush his teeth.

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi

\(\left\{{}\begin{matrix}2x+y=1\\x+y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x+y=-1\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=-3\end{matrix}\right.\)
\(\left\{{}\begin{matrix}2x+2y=18\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=9\\x-y=-6\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}2x=3\\x-y=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{15}{2}\end{matrix}\right.\)\(\left\{{}\begin{matrix}2x+3y=6\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=12\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}7x=21\\3x-6y=9\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)


a) ĐKXĐ: \(x>0;x\ne\pm1.\)
\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{1-x}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right).\\ A=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
\(A=\dfrac{2x+1}{4\sqrt{x}}.\)
b) \(A=\dfrac{3}{4}.\Rightarrow\dfrac{2x+1}{4\sqrt{x}}=\dfrac{3}{4}.\Rightarrow12\sqrt{x}-8x+4=0.\\ \Leftrightarrow8x-12\sqrt{x}-4=0.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{17}}{4}.\\\sqrt{x}=\dfrac{3-\sqrt{17}}{4}.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13+3\sqrt{17}}{8}.\\x=\dfrac{13-3\sqrt{17}}{8}.\end{matrix}\right.\) (TM).

Phương trình (D) có dạng:
\(y=k\left(x-1\right)-2\Leftrightarrow y=kx-k-2\)
Phương trình hoành độ giao điểm (P) và (D):
\(-\dfrac{x^2}{4}=kx-k-2\Leftrightarrow x^2+4kx-4\left(k+2\right)=0\) (1)
\(\Delta'=4k^2+4\left(k+2\right)=\left(2k+1\right)^2+7>0\) ; \(\forall k\)
\(\Rightarrow\) (1) luôn có 2 nghiệm pb hay (D) luôn cắt (P) tại 2 điểm pb A và B
b. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_A+x_B=-4k\\x_Ax_B=-4\left(k+2\right)\end{matrix}\right.\)
Đặt \(A=x_A^2x_B+x_Ax_B^2=x_Ax_B\left(x_A+x_B\right)\)
\(A=-4\left(k+2\right).\left(-4k\right)=16\left(k^2+2k\right)=16\left(k+1\right)^2-16\ge-16\)
\(\Rightarrow A_{min}=-16\) khi \(k+1=0\Leftrightarrow k=-1\)
\(a,\dfrac{\left(-3\right)^{10}.15^5}{25^3.9^7}=\dfrac{3^{10}.\left(3.5\right)^5}{\left(5^2\right)^3.\left(3^2\right)^7}=\dfrac{3^{10}.3^5.5^5}{5^6.3^{14}}=\dfrac{3^{10+5}.5^5}{5^6.3^{14}}=\dfrac{3^{15}.5^5}{5^6.3^{14}}=\dfrac{3}{5}\)
tóm lại