\(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
Các bạn vui lòng giải đầy đủ giúp mình. Thanks trước!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{64}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(-\frac{3}{4}-\frac{2}{9}-\frac{1}{36}\right)+\frac{1}{64}\)
= 1 + -1 + 1/64
= 0 +1/64
= 1/64
\(\frac{7}{3}:\left(4.x-1\right)^2-\frac{1}{4}=\frac{1}{3}\)
\(\frac{7}{3}:\left(4.x-1\right)^2=\frac{1}{3}+\frac{1}{4}\)
\(\frac{7}{3}:\left(4.x-1\right)^2=\frac{7}{12}\)
\(\left(4.x-1\right)^2=\frac{7}{3}:\frac{7}{12}\)
\(\left(4.x-1\right)^2=4\)
\(\left(4.x-1\right)^2=2^2\)
\(4.x-1=2\)
\(4.x=2+1\)
\(4.x=3\)
\(x=3:4\)
\(x=0,75\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+4}{2001}=\frac{x+4}{2002}+\frac{x+4}{2003}\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\Rightarrow x+2004=0\)
=>x=-2004
vậy x=-2004
\(\frac{1}{99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}\)
=\(\frac{1}{99}-\left(\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\left(\frac{1}{2}-\frac{1}{99}\right)\)
=\(\frac{1}{99}-\frac{97}{198}\)
=\(\frac{-95}{198}\)
tham khảo bài của mình tại http://olm.vn/hoi-dap/question/133172.html
\(A=5+\left|\frac{1}{3}-x\right|\)
Vì \(\left|\frac{1}{3}-x\right|\ge0\Rightarrow\left|\frac{1}{3}-x\right|+5\ge5\)
Dấu = xảy ra khi \(\frac{1}{3}-x=0\Rightarrow x=\frac{1}{3}\)
Vậy Min A = 5 khi \(x=\frac{1}{3}\)
-1/7S=(-1/7)^1+(-1/7)^2+(-1/7)^3+...........+(-1/7)^2008
(-1/7)S-S=[(-1/7)^1+(-1/7)^2+........+(-1/7)^2008]-[(-1/7)^0+(-1/7)^1+.....+(-1/7)^2007]
S(-1/7-1)=(-1/7)^2008-(-1/7)^0
(-8/7)S=(-1/7)^2008-1
S=[(-1/7)^2008-1]:(-8/7)
=> 5x - 1 = 0 hoặc 2x - 1 / 3 = 0
=> x = 1/5 hoạc x = 1/6