Cho tam giác ABC kẻ đường cao AH, dựng hình chữ nhật AHBD và AHCE gọi P,Q lần lượt là trung điểm của AB và AC
chứng minh:
PQ là trung trực của đường cao AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét hcn AECH có AE // CH => AE // BC
Xét hcn ADBH AD // BH => AD // BC
Có : AE // BC
AD // BC
=> A, D, E thẳng hàng
b. Xét tam giác ABC có : P là tđ AB, Q là tđ AC
=> PQ là đg tb của tam giác ABC
=> PQ // BC
mà AH vuông góc BC => PQ là trung trực AH
c, Xét hcn AHBD có BA, DH là 2 đường chéo
P là tđ AB => H,P,D thẳng hàng
Tương tự => D,B,H thẳng hàng
d,Xét hcn AHBD có BA, DH là 2 đường chéo => BA = DH
Xét hcn AHCE có AC, EH là 2 đường chéo => AC= EH
hcn AHBD có : ADB = DBH = 90o
hcn AEHC có : HEC = AEC = 90o
chứng minh EDBC là hcn
=> DE = BC
Xét tam giác BAC và tam giác DAE có : AB = DH , DE = BC , HE = AC
=> tam giác BAC = tam giác DAE
=> gócBAC = gócDEH =90o
=> DH vuông góc EH
a, Ta có : \(\hept{\begin{cases}\widehat{BAD}=\widehat{ABD}\\\widehat{CAE}=\widehat{HCA}\end{cases}\Rightarrow\widehat{BAD}+\widehat{CAE}=90^o}\)
\(\widehat{BAD}+\widehat{CAE}+\widehat{BAC}=18^oC\)
=> D , A , E thẳng hàng
b, Do D là trung điểm của AB , Q là trung điểm AC
=> PQ // BC
=> PQ là trung trực của AH
c, Xét hcn ABCD , ta có :
BA , DH là 2 đường chéo
Kết hợp P là trung điểm của AB
=> D , P , H thẳng hàng
d, \(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}\)
\(=\widehat{BDH}+\widehat{HEC}=90^o\)
\(\Rightarrow DH\perp EH\)
a: Xét tứ giác AHBD có
M là trung điểm chung của AB và HD
góc AHB=90 độ
=>AHBD là hình chữ nhật
Xét tứ giác AHCE có
N là trung điểm chung của AC và HE
góc AHC=90 độ
=>AHCE là hình chữ nhật
AE//CH
=>AE//BH
mà AD//BH
nên A,D,E thẳng hàng
mà DA=AE
nên A là trung điểm của DE
Xét tứ giác BDEC có
DE//BC
DE=BC
góc DBC=90 độ
=>BDEC là hình chữ nhật
b: Xét tứ giác ABHE có
AE//HB
AE=HB
=>ABHE là hình bình hành
=>AH cắt BE tại trung điểm của mỗi đường(1)
Xét tứ giác ADHC có
AD//HC
AD=HC
=>ADHC là hbh
=>AH cắt CD tại trung điểm của mỗi đường(2)
Từ (1), (2) suy ra BE cắt CD tại trung điểm của AH
c: Xét ΔHDE có
HA vừa là đường cao, vừa là trung tuyến
=>ΔHDE cân tại H
=>HD=HE
BDEC là hcn
=>BE=CD
a/ Xét tứ giác AHCE có
IA=IC (đề bài)
IH=IE (đề bài)
=> AHCE là hbh (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
^AHC=90 (AH vuông góc BC)
=> AHCE là HCN
b/
+ Xét tg AHC có
IA=IC => HI là trung tuyến
MH=MC (đề bài) => AM là trung tuyến
=> G là trọng tâm của tam giác AHC \(\Rightarrow IG=\frac{IH}{3}\Rightarrow IG=\frac{GH}{2}\)
+ Xét tam giác ACE chứng minh tương tự ta cũng có \(IK=\frac{IE}{3}\Rightarrow IK=\frac{KE}{2}\)
Mà IH = IE
=> IK=IG => GH=KE=KI+KG=GK
a: Xét tứ giác AHCE có
I là trung điểm của AC
I là trung điểm của HE
Do đó: AHCE là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCE là hình chữ nhật
b: Xét ΔHKC có
M là trung điểm của HC
MG//KC
Do đó:G là trung điểm của HK
=>HG=GK(1)
Xét ΔEGC có
N là trung điểm của EC
NK//GC
Do đó: K là trung điểm của EG
=>EK=KG(2)
Từ (1) và (2) suy ra EK=KG=HG
a: Xét tứ giác AHCE có
I là trung điểm chung của AC và HE
góc AHC=90 độ
=>AHCE là hình chữ nhật
b: Xét ΔAHC có
HI,AM là trung tuyến
HI cắt AM tại G
=>G là trọng tâm
=>HG=2/3HI=2/3*1/2*HE=1/3HE
Xét ΔCAE có
AN,EI là trung tuyến
AN cắt EI tại K
=>K là trọng tâm
=>EK=2/3EI=1/3EH
HG+GK+KE=HE
=>GK=HE-1/3HE-1/3HE=1/3HE
=>HG=GK=KE