K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2017

a, Có : A = (2+2^2++2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)

= 30 + 2^4.(2+2^2+2^3+2^4)+....+2^96.(2+2^2+2^3+2^4)

= 30 + 2^4.30 + .... + 2^96.30 

= 30.(1+2^4+....+2^96) chia hết cho 30

=> A chia hết cho 10

b, Có : 2A = 2^2+2^3+....+2^101

A=2A-A=(2^2+2^3+....+2^101)-(2+2^2+2^3+....+2^100) = 2^101 - 2

=> A + 2 = 2^101 là lũy thừa của 2

=> ĐPCM

20 tháng 12 2021

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

20 tháng 12 2021

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

8 tháng 8 2016

Bài 1

a) 3+ 3+ 3+ 3= 34(1 + 3 + 3+ 33)\

b) a)A = 1 + 3 + 32 +......399 =(1 + 3 +  32 + 33 ) + ...+(396 + 397 + 398 + 399)

                                          =   (1 + 3 +  32 + 33 ) + .. +396(1 + 3 +  32 + 33 )

                                          = 40 + ... + 396 . 40 

                                          = 40 (1 + 3 +...+ 396) chia hết cho 40

8 tháng 8 2016

Bài 2 

a)

+)A chia hết cho 6

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^{2002}.30\)

\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6

+)A chia hết cho 31

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)

\(A=155+5^3.155+...+5^{2001}.155\)

\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31

+) A chia hết cho 156

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)

\(A=780+5^4.780+...+5^{2000}.780\)

\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156

b)B=165+2^15 chia hết cho 33

ta có 165 chia hết cho 33

mà 215 ko chia hết cho 33

vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.

7 tháng 4 2020

gọi  22  + 23  + 24  + ....+  220  là B

=> A=4+B

2B=23+24+25+...+221

2B-B=(23+24+25+...+221)-(22  + 23  + 24  + ....+  220)

B=221-22

A=4+B

=>A=4+221-22

=>A=22+221-22

=>A=221

7 tháng 4 2020

Bài 1 : Chứng minh rằng A là một lũy thừa của 2 , với 

A  = 4 + 22  + 23  + 24  + ....+  220 

 A  = 4 + (22  + 23  + 24  + ....+  220 )

 A - 4  = 22  + 23  + 24  + ....+  220 

 2(A -4)  =  23  + 24  + ....+  221

 A - 4  = 2.(A-4) - (A - 4) = ( 23  + 24  + ....+  221 ) + (22  + 23  + 24  + ....+  220 )

 A - 4  = (23 - 23)  + (24  - 24)+ ....+ ( 220 - 220)+(221- 2)

 A - 4  = 221  - 4

 A   =221 - 4 + 4

A = 221

Vậy A là 1 lũy thừa của 2 

Bài 2 : Chứng tỏ rằng

a) 1028  + 8 chia hết cho 72

Ta có:

1000 chia hết cho 8 = 103 chia hết cho 8

=;1025.103 chia hết cho 8

và 8 chia hết cho 8

=1028+8 chia hết cho 8 (1)

Lại có 1028+8= 1000....08(27 CS 0)

=1028+8 chia hết cho 9 (2)

Lại vì ƯCLN (8;9)=1 (3)

Từ (1);(2);(3)=1028+8 chia hết cho 72 => đpcm

b) 8 + 220  chia hết cho 17

Ta có : 88= (82)4= ...64

220= (22)10= ...4

Vậy ...64 + ...4 = ...68

Vì ...68 : 17 = 4 =>( đpcm)

Chúc bạn học tốt !

4 tháng 12 2015

d) Ta có A chia hết cho 3 

=> 2A chia hết cho 3 mà 3 cũng chia hết cho 3

=> 2A+3 chia hết cho A

17 tháng 12 2017

a)

\(A=3+3^2+3^3+3^4+...+3^{120}\)

\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)

\(\Rightarrow2A=3^{121}-3\)

\(\Rightarrow A=\frac{3^{121}-3}{2}\)

b)

\(2A+3\)

\(=3^{121}-3+3\)

\(=3^{121}\)

Mà 3121 là lũy thừa của 3

\(\Rightarrow\) 2A + 3 là lũy thừa của 3.

7 tháng 7 2019

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.