K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2020

Bạn tham khảo link này: https://olm.vn/hoi-dap/tim-kiem?q=cho+c%C3%A1c+s%E1%BB%91+a.b.c;d+nguy%C3%AAn+d%C6%B0%C6%A1ng+%C4%91%C3%B4i+m%E1%BB%99t+kh%C3%A1c+nhau+t/m:2a+ba+b++2b+cb+c++2c+dc+d++2d+ad+a+=6cmr+A=abcd+l%C3%A0+1+s%E1%BB%91+ch%C3%ADnh+ph%C6%B0%C6%A1ng&id=782453

2 tháng 8 2023

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

ms hok lóp 7 thông cảm nhá sory zery much

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

23 tháng 1 2019

Câu hỏi của Trần Anh Đại  nếu ko vào được ib vs tui  để biết thêm chi tiết!

12 tháng 3 2019

Câu hỏi của Trần Anh Đại:bạn tham khảo tại đây!

25 tháng 7 2020

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

\(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

30 tháng 3 2022

sao cái dấu tương đương thứ 4 bạn bỏ c-a v ạ

 

27 tháng 10 2019

Câu hỏi của CTV - Toán lớp 8 - Học toán với OnlineMath