cho p >3 , biết 8p+1 là số nguyên tố hãy chứng minh 4p+1 là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số nguyên tố p khi chia cho 6 có thể dư 1;2; 3; 4; 5
=> p có thể có dạng 6k + 1; 6k + 2; 6k + 3; 6k + 4; 6k + 5
Mà 6k + 2 chia hết cho 2; 6k + 3 chia hết 3; 6k + 4 chia hết cho 2; và p > 3
=> p không thể có dạng 6k + 2; 6k + 3; 6k + 4
Vậy p có thể có dạng 6k + 1; 6k + 5
b) Ta có 8p; 8p + 1; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
Mà p là số nguyên tố; 8 không chia hết cho => 8p không chia hết cho 3
8p + 1 là snt => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2= 2.(4p + 1) => 4p + 1 chia hết cho 3 Hay 4p + 1 là hợp số
Ta có: 8p+1 là số nguyên tố(p nguyên tố>3)
=>8p+2 là hợp số
=>2(4p+1) là hợp số
=> 4p+1 là hợp số
=>đpcm
B2
Vì p nguyên tố > 3 nên p lẻ => p^2 lẻ => p^2 + 2003 chia hết cho 2
Mà p^2+2003 > 2 => p^2+2003 là hợp số
k mk nha
bài 2 số nguyên tố lớn hơn 3 chỉ có thể là số lẻ
=> số lẻ nhân số lẻ bằng một số lẻ
vì 2003 là số lẻ nên số lẻ cộng số lẻ bang số chẵn lớn hơn 2 (vì p^2 là một số nguyên dương)
=> p^2 +2003 là hợp số
2 ) Ta có :
8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp => Tích của chúng chia hết cho 3
mà p là số nguyên tố , 8 không chia hết cho 3 => 8p không chia hết cho 3 '
8p + 1 là số nguyên tố => không chia hết cho 3
=> 8p + 2 chia hết cho 3 ; 8p + 2 = 2 . ( 4p + 1 ) => 4p + 1 chia hết cho 3 hay 4p + 1 là hợp số
Với p=2 \(\Rightarrow\)8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)
Với p=3\(\Rightarrow\)8p+1=8.3+1=24+1=25 là hợp số (loại)
Nếu p>3 \(\Rightarrow\)p có dạng 3k+1 hoặc 3k+2 (k\(\in\)N*)
Với p=3k+1\(\Rightarrow\)8p+1=8(3k+1)+1=24k+8+1=24k+9\(⋮\)3 và lớn hơn 3 (loại)
Với p=s3k+2\(\Rightarrow\)8p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)
\(\Rightarrow\) p=2 hoặc 3k+2
Với p=2\(\Rightarrow\)4p+1=4.2+1=8+1=9 là hợp số (chọn)
Với p=3k+2\(\Rightarrow\)4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)
Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số
Với p=2 ⇒8p+1=8.2+1=16+1=17 là số nguyên tố (chọn)
Với p=3⇒8p+1=8.3+1=24+1=25 là hợp số (loại)
Nếu p>3 ⇒p có dạng 3k+1 hoặc 3k+2 (k∈N*)
Với p=3k+1⇒8p+1=8(3k+1)+1=24k+8+1=24k+9⋮3 và lớn hơn 3 (loại)
Với p=s3k+2⇒8p+1=8(3k+2)+1=24k+16+1=24k+17 là số nguyên tố và lớn hơn 3 (chọn)
⇒ p=2 hoặc 3k+2
Với p=2⇒4p+1=4.2+1=8+1=9 là hợp số (chọn)
Với p=3k+2⇒4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (chọn)
Vậy p=2 hoặc p=3k+2 thì 8p+1 là SNT là 4p+1 là hợp số
Bạn ơi đề hình như phải cho thêm p nguyên tố vì nếu ta cho x = 9 thì 8 . 9 + 1 = 73 là số nguyên tố mà 4 . 9 + 1 = 37 cũng là số nguyên tố kìa
ờ đúng rồi