Cho hàm số " y=(3m-5)x-2 "
a) tìm m để hàm số là hàn số bậc nhất
b) tìm m để hàm số và HSNB
c) tìm m để đường thẳng đã cho song song với ĐT : y=x+7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Để hàm số y=(1-m)x+m-2 là hàm số bậc nhất thì \(1-m\ne0\)
=>\(m\ne1\)
c: Để đồ thị hàm số y=(1-m)x+m-2 song song với đường thẳng y=2x-3 thì
\(\left\{{}\begin{matrix}1-m=2\\m-2\ne-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=-1\\m\ne-1\end{matrix}\right.\)
=>\(m\in\varnothing\)
d: Để đồ thị hàm số y=(1-m)x+m-2 cắt đường thẳng y=-x+1 thì \(1-m\ne-1\)
=>\(m\ne2\)
e: Thay x=2 và y=1 vào y=(1-m)x+m-2, ta được:
2(1-m)+m-2=1
=>2-2m+m-2=1
=>-m=1
=>m=-1
g: Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Ox một góc nhọn thì 1-m>0
=>m<1
Để đồ thị hàm số y=(1-m)x+m-2 tạo với trục Oy một góc tù thì 1-m<0
=>m>1
h: Thay x=0 và y=3 vào y=(1-m)x+m-2, ta được:
0(1-m)+m-2=3
=>m-2=3
=>m=5
f: Thay x=-2 và y=0 vào y=(1-m)x+m-2, ta được:
-2(1-m)+m-2=0
=>-2+2m+m-2=0
=>3m-4=0
=>3m=4
=>\(m=\dfrac{4}{3}\)
a) Khi m =2 thì y = 3x - 1
(Bạn tự vẽ tiếp)
b) Để \((d)//(d_{1})\) thì \(\begin{cases} 2m-1=-3\\ -3m+5\neq2 \end{cases} \) ⇔ \(\begin{cases} m=-1\\ m\neq1 \end{cases} \) ⇔ \(m=-1\)
c)
Để \((d) ⋂ (d1)\) thì \(2m-1\neq-3 \) ⇔ \(m\neq-1\)
Giao điểm của 2 đường thẳng thuộc trục tung => x=0
Khi đó, ta có: \(y=-3.0+2=2\)
⇒ Điểm \((0;2)\) cũng thuộc đường thẳng (d)
⇒ \(2=(2m-1).0-3m+5\) ⇔ \(m=1\) (TM)
Hàm số y = ( 2 m – 2 ) x + m – 2 là hàm số bậc nhất khi 2 m – 2 ≠ 0 ⇔ m ≠ 1
Để d // d’ thì 2 m − 2 = 3 m − 3 ≠ − 3 m ⇔ m = 5 2 m ≠ 3 4 ⇔ m = 5 2 (thỏa mãn)
Vậy m = 5 2
Đáp án cần chọn là: C
a,2m-1 khác 0 => m khác \(\dfrac{1}{2}\)
b,2m-1 lớn hơn hoặc bằng 0=> m lớn hơn hoặc bằng \(\dfrac{1}{2}\)
c, Thay vào x=2;y=4 ta có :
4=4m-2+2=4m =>m=1
d, do đồ thị hàm số y song song với đt y=3x,nên ta có:
2m-1=3 =>2m=4 =>m=2
BBn hok lớp mấy vậy nhỉ? Good luck
1. Để 2 đồ thị hàm số đã cho là hai đường thẳng song song thì
\(\left\{{}\begin{matrix}m+1=2m+1\\2m\ne3m\end{matrix}\right.\left(ĐK:m\ne-1,-\dfrac{1}{2}\right)\)
Hệ phương trình tương đương với:
\(\left\{{}\begin{matrix}m=0\\m\ne0\end{matrix}\right.\Rightarrow\text{Hệ\:phương\:trình\:vô\:nghiệm}\)
Vậy không tồn tại giả trị m để đồ thị của hai hàm số trên song song.
2. Để giao điểm hai đồ thì nằm trên trục hoành thì y = 0.
\(y=\left(m+1\right)x+2m=0\Rightarrow x=-\dfrac{2m}{m+1}\) (1)
\(y=\left(2m+1\right)x+3m=0\Rightarrow x=-\dfrac{3m}{2m+1}\) (2)
và \(m+1\ne2m+1\Rightarrow m\ne0\) (3)
Từ (1) và (2) và (3) ta tìm được m = 1.
a. Để hs (1) đồng biến trên R :
\(\Leftrightarrow-m-18>0\)
\(\Leftrightarrow-m>18\)
\(\Leftrightarrow m< -18\)
Vậy \(m< -18\) thì hs (1) đồng biến trên R
b. Do ĐTHS (1) // đ.t \(y=-19x-5\) nên :
\(\left\{{}\begin{matrix}-m-18=-19\\3m+1\ne-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m\ne-2\end{matrix}\right.\)
c. Vì ĐTHS (1) đi qua điểm \(A\left(-1;2\right)\) nên ta có : x = -1 và y = 2
Thay x = -1 và y = 2 vào (1) ta được :
\(2=\left(-m-18\right).\left(-1\right)+3m+1\)
\(\Leftrightarrow2=m+18+3m+1\)
\(\Leftrightarrow-17=4m\)
\(\Leftrightarrow m=\dfrac{-17}{4}\)
a. hàm số (1) đồng biến trên R khi -m-18 > 0 <=> m < -18 . Vậy m < -18 thì hàm số (1) đồng biến. b. đồ thị hàm số (1) song song với đường thẳng y= -19x-5 <=> -m-18=-19 và 3m+1 khác -5 <=> m= 1 và m khác 4/3 . Vậy m=1 và m khác 4/3 thì đồ thị hàm số ( 1 ) song song với đường thẳng y= -19x-5 . c. đồ thị hàm số y=(-m-18)x+3m+1 đi qua A(-1;2) => x=-1 ; y=2 => 2=(-m-18)*(-1)+3m+1 <=> 2= m+18+3m+1 <=> 4m=17 <=> m=17/4 . Vậy m=17/4 thì đồ thị hàm số y=(-m-18)x+3m+1 đi qua A(-1;2)
a: Để hàm số y=(2m+3)x-2m+5 nghịch biến trên R thì 2m+3<0
=>2m<-3
=>\(m< -\dfrac{3}{2}\)
b: Để (d)//(d1) thì
\(\left\{{}\begin{matrix}2m+3=3m-2\\-2m+5\ne1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-m=-5\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=5\\m\ne2\end{matrix}\right.\)
=>m=5
c: Thay y=5 vào y=3x-1, ta được:
3x-1=5
=>3x=6
=>x=6/3=2
Thay x=2 và y=5 vào (d), ta được:
\(2\left(2m+3\right)-2m+5=5\)
=>\(4m+6-2m+5=5\)
=>2m+11=5
=>2m=-6
=>m=-6/2=-3
d: Tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\\left(2m+3\right)x-2m+5=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x\left(2m+3\right)=2m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=\dfrac{2m-5}{2m+3}\end{matrix}\right.\)
=>\(A\left(\dfrac{2m-5}{2m+3};0\right)\)
\(OA=\sqrt{\left(\dfrac{2m-5}{2m+3}-0\right)^2+\left(0-0\right)^2}=\sqrt{\left(\dfrac{2m-5}{2m+3}\right)^2}=\left|\dfrac{2m-5}{2m+3}\right|\)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x\left(2m+3\right)-2m+5=0\left(2m+3\right)-2m+5=-2m+5\end{matrix}\right.\)
=>\(B\left(-2m+5;0\right)\)
\(OB=\sqrt{\left(-2m+5-0\right)^2+\left(0-0\right)^2}\)
\(=\sqrt{\left(-2m+5\right)^2}=\left|2m-5\right|\)
Vì Ox\(\perp\)Oy
nên OA\(\perp\)OB
=>ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot\left|2m-5\right|\cdot\dfrac{\left|2m-5\right|}{\left|2m+3\right|}\)
\(=\dfrac{1}{2}\cdot\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}\)
Để \(S_{AOB}=1\) thì \(\dfrac{\dfrac{1}{2}\left(2m-5\right)^2}{\left|2m+3\right|}=1\)
=>\(\dfrac{\left(2m-5\right)^2}{\left|2m+3\right|}=2\)
=>\(\left(2m-5\right)^2=2\left|2m+3\right|\)
=>\(\left(2m-5\right)^2=2\left(2m+3\right)\)
=>\(4m^2-20m+25-4m-6=0\)
=>\(4m^2-24m+19=0\)
=>\(m=\dfrac{6\pm\sqrt{17}}{2}\)