K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=sin\left(x-\dfrac{9\Omega}{2}\right)\cdot tan\left(x+7\Omega\right)-cos\left(x-\dfrac{7}{2}\Omega\right)\)

\(=sin\left(x-\dfrac{8}{2}\Omega-\dfrac{\Omega}{2}\right)\cdot tan\left(x+6\Omega+\Omega\right)-cos\left(x-\dfrac{8}{2}\Omega+\dfrac{\Omega}{2}\right)\)

\(=sin\left(x-\dfrac{\Omega}{2}\right)\cdot tan\left(x+\Omega\right)-cos\left(x+\dfrac{\Omega}{2}\right)\)

\(=-sin\left(\dfrac{\Omega}{2}-x\right)\cdot tanx-\left(-sinx\right)\)

\(=-cosx\cdot tanx+sinx=-sinx+sinx=0\)

23 tháng 9 2024

😰🍚🍚🍚

23 tháng 8 2018

a)\(x^3y+3x^2y\)

b)\(-24x^2+4xy\)

23 tháng 8 2018
Mấy bn nhớ ghi chi tiết nha (đừng rút gọn) thông cảm tại thầy mik khó quá😍😍😍
24 tháng 8 2018

B1:

a,\(\left(3x-2\right)\left(x-3\right)=3x^2-9x-2x+6=3x^2-11x+6\)

b,\(\left(2x+1\right)\left(x+3\right)=2x^2+6x+x+3=2x^2+7x+3\)

c,\(\left(x-3\right)\left(3x-1\right)=3x^2-x-9x+3=3x^2-10x+3\)

B2:

1)\(x^2-\left(x+4\right)\left(x-1\right)=x^2-\left(x^2-x+4x-4\right)=x^2-x^2+x-4x+4=-3x+4\)

2)\(x\left(x+2\right)-\left(x-2\right)\left(x+4\right)=x^2+2x-\left(x^2+4x-2x-8\right)\)

\(=x^2+2x-x^2-4x+2x+8=8\)

24 tháng 8 2018

4) (3x-2)(x-3)= 3x(x-3)-2(x-3)

=3x.x+3x.(-3)-2.x-2.(-3)

=\(3x^2\)-9x-4x+6

=\(3x^2\)+(-9x-4x)+6

=\(3x^2\)-13x+6

5) (2x+1)(x+3)=2x(x+3)+1(x+3)

=2x.x+2x.3+1.x+1.3

=\(2x^2\)+6x+1x+3

=\(2x^2\)+(6x+1x)+3

=\(2x^2\)+7x+3

6) (x-3)(3x-1)=x(3x-1)-3(3x-1)

=x.3x+x.(-1)-3.3x-3.(-1)

=\(3x^2\)-1x-9x+3

=\(3x^2\)+(-1x-9x)+3

=\(3x^2\)-10x+3

rút gọn biểu thức

A) \(x^2\)-(x+4)(x-1)=\(x^2\)- x(x-1)-4(x-1)

=\(x^2\)-x.x-x.(-1)-4.x-4.(-1)

=\(x^2\)-\(x^2\)+1x-4x+4

=(\(x^2-x^2\))+(1x-4x)+4

= -3x+4

B) x(x+2)-(x-2)(x+4)=x.x+x.2-x(x+4)+2(x+4)

=\(x^2+2x\)-x.x-x.4+2.x+2.4

=\(x^2+2x-x^2-4x+2x+8\)

=(\(x^2-x^2\))+(2x-4x+2x)+8

=8

tính giá trị biểu thức

A=3(x-2)-(2+x)(x-3)

=3.x+3.(-2)-2(x-3)-x(x-3)

=3x-6-2.x-2.(-3)-x.x-x(-3)

=3x-6-2x+6-\(x^2\)+3x

=(3x-2x+3x)+(-6+6)\(-x^2\)

=4x - \(x^2\)

thay x=-8 vào biểu thức thu gọn ta được:

4.(-8)- (-8)\(^2\)

= - 32 +64

= 32

B= x(3-x)-(1+x)(1-x)

=x.3+x.(-x)-1(1-x)-x(1-x)

=3x -\(x^2\)-1.1-1 .(-x)-x.1-x.(-x)

=3x\(-x^2\)-\(1^2\)+1x-1x+\(x^2\)

=(3x+1x-1x)+(\(-x^2+x^2\))-1

=3x-1

thay x=-5 vào biểu thức thu gọn ta được:

3.(-5)-1

=-15-1

=-16

24 tháng 8 2018

Thu gọn biểu thức

4) (3x - 2) (x - 3) 

= ( 3x2 - 2x ) - ( 3x x 3 - 2 x 3 )

= 3x2 - 2x - 3x x 3 + 2 x 3

= 3x2 - 2x - 9x + 6

= 3x2 - 11x + 6 

5) (2x + 1) (x + 3) 

= ( 2x2 + 1x ) + ( 6x + 3 )

= 2x2 + 1x + 6x + 3

= 2x2 + 7x + 3

6) (x - 3) (3x - 1) 

= ( 3x2 - 9x ) - ( x - 3 )

= 3x2 - 9x - x + 3

= 3x2 - 10 + 3

Rút gọn biểu thức

A) x^2 - (x + 4) (x - 1)

= x2 - ( x+ 4x ) - ( x + 4 )

= x- x2 - 4x - x - 4

= -5x - 4

B) x (x + 2) - (x - 2) (x + 4)

= x2 + 2x - ( x2 - 2x ) + ( 4x - 8 )

= x+ 2x - x2 + 2x + 4x - 8

= 8x - 8

Tính giá trị biểu thức

A = 3 (x - 2) - (2 + x) (x - 3) tại x = - 8

Thế x = -8 vào, ta có :

= 3 ( -8 -2 ) - ( 2 + -8 ) ( -8 - 3 )

= 3 x ( -10 ) - ( - 6 ) ( -11 )

= -30 - 66

= -96

B = x (3 - x) - (1 + x) ( 1 - x) tại x = - 5

Thế x = - 5 vào, ta có :

= -5 ( 3 - -5 ) - ( 1+ -5 ) ( 1 - -5 )

= -5 x 8 - (-4) x 6

= - 40 - -24

= -40 + 24

= -16

100% đúng 

hok tốt nha 

6 tháng 7 2019

a) Ta có: \(\sin^2a^o=\cos^2\left(90^o-a^o\right)\)

Biểu thức trên

\(=\left(\sin^21^o+\sin^o89\right)+\left(\sin^22^o+\sin^288^o\right)+...+\left(\sin^244^o+\sin^246^o\right)+\sin^245^o\)

\(=\left(\sin^21^o+\cos^21^o\right)+\left(\sin^22^o+\cos^22^o\right)+...+\left(\sin^244^o+\cos^246^o\right)+\sin^245^o\)

\(=1+1+..+1+\sin^245^o=44+\frac{1}{2}=\frac{89}{2}\)

b) 

Ta có: \(\sin^2x+\cos^2x=1\)

\(0^o< x< 90^o\)

=> \(0< \sin x;\cos x< 1\)

Ta có:  \(\frac{\sin^2x+\cos^2x}{\text{​​}\text{​​}\sin x.\cos x}=\frac{1}{\frac{12}{25}}=\frac{25}{12}\Leftrightarrow\frac{\sin x}{\cos x}+\frac{\cos x}{\sin x}=\frac{25}{12}\)

\(\Leftrightarrow\tan x+\frac{1}{\tan x}=\frac{25}{12}\Leftrightarrow\tan^2x-\frac{25}{12}\tan x+1=0\)

Đặt t =tan x => có phương trình bậc 2 ẩn t => Giải đen ta => ra đc t => ra đc tan t

\(\Leftrightarrow\orbr{\begin{cases}\tan x=\frac{3}{4}\\\tan x=\frac{4}{3}\end{cases}}\)

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

\(\eqalign{

& \widehat {I{\rm{D}}B} = \widehat {IEB} = 90^\circ \cr

& \widehat {DBI} = \widehat {EBI}\left( {gt} \right) \cr} \)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)

Quảng cáo

Xét hai tam giác vuông IEC và IFC, ta có ;

\(\eqalign{

& \widehat {IEC} = \widehat {IFC} = 90^\circ \cr

& \widehat {ECI} = \widehat {FCI}\left( {gt} \right) \cr} \)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA

7 tháng 2 2020

Kẻ: ID⊥AB,IE⊥BC,IF⊥ACID⊥AB,IE⊥BC,IF⊥AC

Xét hai tam giác vuông IDB và IEB, ta có:

ˆIDB=ˆIEB=90∘ˆDBI=ˆEBI(gt)IDB^=IEB^=90∘DBI^=EBI^(gt)

BI cạnh huyền chung

⇒⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)

Suy ra: ID = IE (hai cạnh tương ứng)       (1)

Xét hai tam giác vuông IEC và IFC, ta có ;

ˆIEC=ˆIFC=90∘ˆECI=ˆFCI(gt)IEC^=IFC^=90∘ECI^=FCI^(gt)

CI canh huyền chung

Suy ra:  ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)

Suy ra: IE = IF (hai cạnh tương ứng)           (2)

Từ (1) và (2) suy ra: ID = IF

Xét hai tam giác vuông IDA và IFA, ta có:

            ˆIDA=ˆIFA=90∘IDA^=IFA^=90∘

            ID = IF (chứng minh trên)

            AI cạnh huyền chung

Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)

Suy ra: ˆDAI=ˆFAIDAI^=FAI^ (hai góc tương ứng)

Vậy AI là tia phân giác của ˆA



Read more: https://sachbaitap.com/cau-100-trang-151-sach-bai-tap-sbt-toan-lop-7-tap-1-c7a10140.html#ixzz6DFwdbF2W