K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

A=2+22+23+24+....+230

=(2+22+23)+(24+25+26)+...+(228+229+230)

=1(2+22+23)+23(2+22+23)+...+227(2+22+23)

=1.7+23.7+25.7+...+227.7

=7(1+23+25+...+227)

vì 7:7-->A:7

6 tháng 1 2018

\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)

    \(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)

      \(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)

      \(=2.7+2^4.7+...+2^{28}.7\)

      \(=7.\left(2+2^4+...+2^{28}\right)\)

       \(\Rightarrow A⋮7\)

         

5 tháng 4 2017

Ta có:10^28+8=100...008 (27 chữ số 0) 
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1) 
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2) 
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72 
Nếu chưa học thì giải zầy: 
10^28+8=2^28.5^28+8 
=2^3.2^25.5^28+8 
=8.2^25.5^28+8 chia hết cho 8 
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1 
=>10^28+8 chia hết cho 8.9=72 

5 tháng 4 2017

abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg) 
= 11. (ab . 909 + cd . 9) +( ab + cd + eg) 
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11 
mà theo bài ra ab + cd + eg
Chia hết cho 11 
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg

Vì 11\(⋮\)11

Vậy...

Vậy 

25 tháng 12 2014

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

6 tháng 4 2016

phuong ne 3(k+1)sao la so nguyen to duoc

31 tháng 1 2018

p là số ngyên tố lớn hơn 3=>p không chia hết cho 3

=>p2=3k+1

=>p2-1=3k+1-1=3k chia hết cho 3

=>đpcm

31 tháng 1 2018

Nếu p là số nguyên tố lớn hơn 3 thì p không chia hết cho 3.

Vậy p = 3t + 1 và p = 3t + 2 (t là số tự nhiên)

Tuy nhiên p cũng không chia hết cho 2, nên nếu p = 3t + 1 thì t chẵn (t = 2k); p = 3t + 2 thì t lẻ (t = 2k + 1) (k là số tự nhiên). 

Vậy ta đặt  \(p=6k+1\)   hoặc \(p=6k+5\)  (k lẻ)

+) Với p = 6k + 1 thì \(p^2-1=\left(6k+1\right)^2-1=36k^2+12k=12k\left(3k+1\right)⋮3\)

+) Với p = 6k + 5 thì \(p^2-1=\left(6k+5\right)^2-1=36k^2+60k+24=12\left(3k^2+5k+2\right)⋮3\)

Vậy với p là số nguyên tố lớn hơn 3 thì p2 - 1 luôn chia hết 3.

1 tháng 4 2018

Vì p là số nguyen tố lớn hơn 3 nên p là số lẻ không chia hết cho 3\(\Rightarrow\)

p  không chia hết cho 3 thì p^2 chia 3 dư 1 nên p^2-1 chia hết cho 3 (1)

Lại có p^2-1=(p-1)(p+1) vì p là số lẻ nên p-1 và p+1 là 2 số chẵn liên tiếp nên (p-1)(p+1) chia hết cho 8(2)

Từ (1) và (2) suy ra  p^2-1 chia hết cho 3.8=24(vì 8 và 3 nguyên tố cùng nhau)

22 tháng 6 2017

moi nguoi giai nhanh giup minh nhe

xét p=3k+1=>p+2=3k+3=3(k+1) là hợp số  (vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1) chia hết cho 3(1)

p là số lẻ=>p+1 là số chẵn=>p+1 chia hết cho 3(2)

từ (1);(2)=>p+1 chia hết cho 6

=>đpcm

8 tháng 1 2016

< = > p + 1 chẵn

p chia  3 dư 2 thõa mãn p và p +2 là 2 số nguyên tố

=> p + 1 chia hết cho 3

Mà UCLN(2 ; 3) = 1 

=> p + 1 chia hết cho 2.3=  6