Tìm giá trị nhỏ nhất của A = |x| + 2 Tìm giá trị lớn nhất của B = 7 - |x|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
a) Để A có giá trị nhỏ nhất thì (x-7)2 < 0
Hay (x-7)2+ 2003 < 2003
Vì (x-7)2 luôn dương => GTNN của (x-7)2+ 2003 = 2003
Dấu = chỉ xảy ra khi (x-7)2=0
=> x-7 =0
x = 7
Vây GTNN của A = 2003 <=> x=7
b) Để B có GTLN thì -(x+2)2 > 0
Hay -(x+2)2+17 > 17
x thuộc tập N
a) Ta có (x-7)2 >=0 với mọi x thuộc Z
=> (x-7)2 +2003 >= 2003 với mọi z thuộc Z
hay A >= 2003
Dấu "=" xảy ra <=> (x-7)2=0 <=> x-7=0 <=> x=7
Vậy Min A=2003 đạt được khi x=7
b) Ta có -(x+2)2 =< 0 với mọi x thuộc Z
=> -(x+2)2+17 =< 17 với mọi x thuộc Z
hay B =< 17
Dấu "=" <=> -(x+2)2=0
<=> x+2=0
<=> x=-2
Vậy MaxB=17 đạt được khi x=-2
ta có
\(A=\left|x-8\right|+\left|x+2\right|+\left|x+5\right|+\left|x+7\right|\ge\left|-x+8-x-2+x+5+x+7\right|=18\)
Dấu bằng xảy ra khi \(-5\le x\le-2\)
\(B=\left|x+3\right|+\left|x-5\right|+\left|x-2\right|\ge\left|x+3-x+5\right|+\left|x-2\right|=8+\left|x-2\right|\ge8\)
Dấu bằng xảy ra khi \(x=2\)
\(C=\left|x+5\right|-\left|x-2\right|\le\left|x+5+2-x\right|=7\)
Dấu bằng xảy ra khi \(x\ge2\)
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1
Vậy A nhỏ nhất=-1
=>lx-7l=0
=>x=7
b/Vì l2x+4l>0 nên -l2x+4l<0
nên -l2x+4l+3<3
=> B lớn nhất =3
=>x=-2
a, \(A=\left|x-7\right|\ge0\)
\(\Rightarrow\left|x-7\right|-1\ge-1\)
Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7
Vậy minA là -1 tại x = 7
b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)
\(\Rightarrow-\left|2x+4\right|+3\ge3\)
Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2
Vậy maxB là 3 tại x = -2
2: B=|x+5|-|x-2|<=|x+5-x+2|=7
Dấu = xảy ra khi -5<=x<=2
GTNN của A = 2 <=> x= 0
GTLN của B = 7 <=> x=0
Giá trị nhỏ nhất của A = 2
Khi đó I x I = I 0 I = 0
Giá trị lớn nhất của B = 7
Khi đó I x I = I 0 I = 0