Tìm x,y biết:
(x-2).(y+1)=17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(x-2)(y+1)=17
Ta xét bảng sau:
x-2 | 1 | 17 |
x | 3 | 19 |
y+1 | 17 | 1 |
y | 16 | 0 |
b)(2x-1)(y+3)=36
Ta xét bảng sau:
2x-1 | 1 | 2 | 3 | 4 | 6 | 9 | 12 | 18 | 36 |
2x | 2 | 3 | 4 | 5 | 7 | 10 | 13 | 19 | 37 |
x | 1 | 2 | 5 | ||||||
y+3 | 36 | 12 | 4 | ||||||
y | 33 | 9 | 1 |
Ta có: \(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)
Đặt \(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\left(k\ne0\right)\)
\(\Rightarrow x=4k-1;y=2k+2;z=3k-2\)
Theo đề ta có:
\(x+y+z=17\)
hay \(4k-1+2k+2+3k-2=17\)
\(9k-1=17\)
\(9k=18\)
\(k=\frac{18}{9}=2\)
Do đó:
\(x=4.2-1=8-1=7\)
\(y=2.2+2=4+2=6\)
\(z=3.2-2=6-2=4\)
Vậy \(x=7;y=6;z=4\)
hok tốt!!
Trả lời:
\(\frac{4}{x+1}=\frac{2}{y-2}=\frac{3}{z+2}\)\(\left(Đk:x\ne-1;y\ne2;z\ne-2\right)\)
\(\Leftrightarrow\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}\)
Đặt\(\frac{x+1}{4}=\frac{y-2}{2}=\frac{z+2}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x+1=4k\\y-2=2k\\z+2=3k\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=4k-1\\y=2k+2\\z=3k-2\end{cases}}\)
Mà\(x+y+z=17\)
\(\Rightarrow4k-1+2k+2+3k-2=17\)
\(\Leftrightarrow9k-1=17\)
\(\Leftrightarrow9k=18\)
\(\Leftrightarrow k=2\)
\(\Rightarrow\hept{\begin{cases}x=2.4-1=7\\y=2.2+2=6\\z=2.3-2=4\end{cases}}\)(Thỏa mãn\(Đk:x\ne-1;y\ne2;z\ne-2\))
Vậy\(\hept{\begin{cases}x=7\\y=6\\z=4\end{cases}}\)
Hok tốt!
Good girl
a. Vì \(\left|x+3\right|\ge0;\left|y-2\right|\ge0\)
Mà | x + 3 | + | y - 2 | = 0
=> x + 3 = y - 2 = 0
=> x = -3; y = 2
b. |-x + 5| = |1 - 5|
=> |5 - x| = |-4|
=> 5 - x = -4 hoặc 5 - x = -(-4)
=> x = 5 - (-4) hoặc 5 - x = 4
=> x = 5 + 4 hoặc x = 5 - 4
=> x = 9 hoặc x = 1
c. -11 - |x| = -17
=> |x| = -11 - (-17)
=> |x| = -11 + 17
=> |x| = 6
=> x = 6 hoặc x = -6
d. |x - 2| + |2y + 4| = 0
=> x - 2 = 2y + 4 = 0
=> x = 2; y = -2
e. (x - 1) . (y + 2) = 1
=> (x - 1) . (y + 2) = 1 . 1 = (-1) . (-1)
+) x - 1 = y + 2 = 1
=> x = 2; y = -1
+) x - 1 = y + 2 = -1
=> x = 0; y = -3
a) x = -3 ; y = 2
b) x = 1
c) x = 6 ; -6
d) x = 2 ; y = -2
e) x = 2 ; y = -1
1/ \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}vàx+y-z=-21\)
-Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{-21}{7}=-3\)
-Suy ra: \(\frac{x}{6}=-3\Rightarrow x=-18\)
\(\frac{y}{4}=-3\Rightarrow y=-12\)
\(\frac{z}{3}=-3\Rightarrow z=-9\)
vậy x=-18;y=-12;z=-9
2) a/y=f(x)=x^2-8
\(\Rightarrow\)y= f(3)=3^2-8=1
\(\Rightarrow\)y=f(-2)=(-2)^2-8=-4
vậy f(3)=1;f(-2)=-4
b/y=17=x^2-8
x^2-8=17
x^2=17+8
x^2=25
x^2=5^2
x=5
vậy x=5
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
a) Ta có : \(\left(x+3\right)\left(y+2\right)=1\)
Vì \(x+3\)và \(y+2\)là số nguyên
\(\Rightarrow x+3,y+2\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng sau :
x+3 | 1 | -1 |
x | -2 | -4 |
y+2 | -1 | 1 |
y | -3 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-2;-3\right);\left(-4;-1\right)\right\}\)
Các phần sau làm tương tự
a) (x+3).(y+2)=1
=>x+3 và y+2 thuộc Ư(1)={1;-1}
Ta có bảng sau
x+3 | 1 | -1 |
y+2 | 1 | -1 |
x | -2 | -4 |
y | -1 | -3 |
Vậy....
Các câu khác lm tương tự nha
\(\left(x-2\right).\left(y+1\right)=17\)
\(\Rightarrow\)x - 2 và y + 1 là các ước của 17
\(Ư\left(17\right)=\left\{1;17\right\}\)
Lập bảng giá trị:
Vậy các cặp (x,y) cần tìm là:
(3;16); (19;0).
Có 17 = 17 . 1 = 1 . 17
Xét ( x - 2 ) . ( y + 1 ) = 17 . 1
=> x = 19 ; y = 0
Xét ( x - 2 ) . ( y + 1 ) = 1 . 17
=> x = 3 ; y = 16