Tìm x để biểu thị sau mang giá trị nguyên:
A=7/× +2 B=6/x - 2 C= x+3/x-1 D=x-2/x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3}{x-1}\)
=> x - 1 \(\in\)Ư(3) = {\(\pm1;\pm3\)}
x -1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
b) \(B=\frac{x+2}{x+1}=\frac{x+1+1}{x+1}=1+\frac{1}{x+1}\)
=> x + 1 \(\in\)Ư(1) = { \(\pm\)1}
=> x = 0 hoặc x = -2
c) \(C=\frac{5}{2x+7}\)
=> 2x + 7 \(\in\)Ư(5) = { \(\pm1;\pm5\)}
=> 2x \(\in\){-6 ; -8 ; -2 ; -12}
=> x \(\in\){ -3; -4 ; -1; -6}
d) \(D=\frac{11x-8}{x+2}=\frac{11\left(x+2\right)-30}{x+2}=11-\frac{30}{x+2}\)
=> 30 \(⋮\)x + 2 => x + 2 thuộc Ư(30)
Tự xét
Bg
a) Ta có: A = \(\frac{3}{x-1}\) (x thuộc Z)
Để A nguyên thì 3 \(⋮\)x - 1
=> x - 1 thuộc Ư(3)
Ư(3) = {1; -1; 3; -3}
=> x - 1 = 1 hay -1 hay 3 hay -3
=> x = 1 + 1 hay -1 + 1 hay 3 + 1 hay -3 + 1
=> x = {2; 0; 4; -2}
b) Ta có: B = \(\frac{x+2}{x+1}\) (x thuộc Z)
Để B nguyên thì x + 2 \(⋮\)x + 1
=> x + 2 - (x + 1) \(⋮\)x + 1
=> x + 2 - x - 1 \(⋮\)x + 1
=> x - x + (2 - 1) \(⋮\)x + 1
=> 1 \(⋮\)x + 1
=> x + 1 thuộc Ư(1)
Ư(1) = {1; -1}
=> x + 1 = 1 hay -1
=> x = 1 - 1 hay -1 - 1
=> x = {0; -2}
c) Ta có: C = \(\frac{5}{2x+7}\) (x thuộc Z)
Để C nguyên thì 5 \(⋮\)2x + 7
=> 2x + 7 thuộc Ư(5)
Ư(5) = {1; - 1; 5; -5}
=> 2x + 7 = 1 hay -1 hay 5 hay -5
......... (Tự làm)
=> x = {-3; -4; -1; -6}
d) Ta có: D = \(\frac{11x-8}{x+2}\) (x thuộc Z)
Để D nguyên thì 11x - 8 \(⋮\)x + 2
=> 11x - 8 - [11(x + 2)] \(⋮\)x + 2
=> 11x - 8 - 11x - 11.2 \(⋮\)x + 2
=> 11x - 11x - (22 + 8) \(⋮\)x + 2
=> 30 \(⋮\)x + 2
=> x + 2 thuộc Ư(30)
Ư(30) = {...}
.... (Tự làm)
=> x = {…}
a) \(A=\frac{5}{\sqrt{x}+1}\)
A nguyên\(\Leftrightarrow\frac{5}{\sqrt{x}+1}\)nguyên\(\Leftrightarrow5⋮\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Mà \(\sqrt{x}+1\ge1\)nên \(\sqrt{x}+1\in\left\{1;5\right\}\)
\(TH1:\sqrt{x}+1=1\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\)
\(TH2:\sqrt{x}+1=5\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)
b) \(B=\frac{7}{\sqrt{x}-3}\)
A nguyên \(\Leftrightarrow\frac{7}{\sqrt{x}-3}\)nguyên\(\Leftrightarrow7⋮\left(\sqrt{x}-3\right)\)
\(\Leftrightarrow\sqrt{x}-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
c) \(C=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\)
\(=1+\frac{4}{\sqrt{x}-3}\)
C nguyên\(\Leftrightarrow\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow4⋮\sqrt{x}-3\)
Tương tự hai câu a,b
d) \(D=\frac{\sqrt{x}+2}{\sqrt{x}-1}=\frac{\sqrt{x}-1+3}{\sqrt{x}-1}\)
\(=1+\frac{3}{\sqrt{x}-1}\)
D nguyên\(\Leftrightarrow\frac{3}{\sqrt{x}-1}\)nguyên
Tương tự
a) \(\left(\frac{x+3}{x-2}+\frac{x+2}{3-x}+\frac{x+2}{x^2-5x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x+3}{x-2}-\frac{x+2}{x-3}+\frac{x+2}{x^2-2x-3x+6}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}-\frac{\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}+\frac{x+2}{\left(x-2\right)\left(x-3\right)}\right):\left(\frac{1-x}{x+1}\right)\)
= \(\left(\frac{x^2-9-x^2+4+x+2}{\left(x-2\right)\left(x-3\right)}\right).\frac{x+1}{1-x}\)
=\(\frac{-3+x}{\left(x-2\right)\left(x-3\right)}.\frac{x+1}{1-x}\)
=\(\frac{1}{\left(x-2\right)}.\frac{x+1}{1-x}\)
=\(\frac{x+1}{\left(x-2\right)\left(1-x\right)}\)
b) Để A >1 \(\Leftrightarrow\frac{x+1}{\left(x-2\right)\left(1-x\right)}>1\)
\(\Leftrightarrow\frac{-\left(1-x\right)\left(3-x\right)}{\left(x-2\right)\left(1-x\right)}\)
\(\Leftrightarrow\frac{x-3}{x-2}>0\)
\(\Rightarrow\orbr{\begin{cases}x-3\ge0\\x-2>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\ge3\\x>2\end{cases}\Leftrightarrow}x\ge3}\)
\(\Rightarrow\orbr{\begin{cases}x-3< 0\\x-2< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 2\end{cases}\Leftrightarrow}x< 2}\)
Vậy ...
\(A=\dfrac{7}{x+2}\) nguyên
\(\Rightarrow7⋮\left(x+2\right)\)
\(\Rightarrow\left(x+2\right)\inƯ\left(7\right)\)
\(\Rightarrow\left(x+2\right)\in\left\{-1;1;-7;7\right\}\)
Ta có bảng giá trị:
Vậy \(x\in\left\{-1;-3;5;-9\right\}\)
Câu B làm tương tự.
\(C=\dfrac{x+3}{x-1}\) nguyên
\(\Rightarrow\left(x+3\right)⋮\left(x-1\right)\)
Mà \(\left(x-1\right)⋮\left(x-1\right)\)
\(\Rightarrow\left(x+3\right)-\left(x-1\right)⋮\left(x-1\right)\)
\(4⋮\left(x-1\right)\)
\(\Rightarrow\left(x-1\right)\inƯ\left(4\right)\)
\(\left(x-1\right)\in\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng giá trị:
Vậy \(x\in\left\{2;0;3;-1;5;-3\right\}\)
Câu D làm tương tự.