(x -2/5 )2 -2 = 7/9
mik đg cần gấp ạ , thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Rightarrow5x=10\)
\(\Leftrightarrow x=2\)
Vậy x = 2
b) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Rightarrow-3x=-48\)
\(\Leftrightarrow x=16\)
Vậy x = 16
c) \(\dfrac{1}{9}=\dfrac{-2x}{10}\)
\(\Rightarrow-18x=10\)
\(\Leftrightarrow x=-\dfrac{5}{9}\)
Vậy \(x=-\dfrac{5}{9}\)
d) ĐKXĐ: \(x\ne0\)
\(\dfrac{3}{x}-5=\dfrac{-9}{x}+2\)
\(\Leftrightarrow\dfrac{3-5x}{x}=\dfrac{-9+2x}{x}\)
\(\Rightarrow3-5x=-9+2x\)
\(\Leftrightarrow7x=12\)
\(\Leftrightarrow x=\dfrac{12}{7}\)
Vậy \(x=\dfrac{12}{7}\)
e) ĐKXĐ: \(x\ne0\)
\(\dfrac{x}{-2}=\dfrac{-8}{x}\)
\(\Rightarrow x^2=16\)
\(\Leftrightarrow x=\pm4\)
Vậy \(x=\pm4\)
a) Ta có: \(\dfrac{x}{5}=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{2\cdot5}{5}=2\)
Vậy: x=2
b) Ta có: \(\dfrac{3}{-8}=\dfrac{6}{-x}\)
\(\Leftrightarrow-x=\dfrac{6\cdot\left(-8\right)}{3}=-16\)
hay x=16
Vậy: x=16
Bạn có thể thấy 2x-1 là a , 3x+2 là b thì 2.(2x-1)(3x+2)=2ab
nên phương trình trên có thể dùng bình phương 1 tổng
\(\left(2x-1\right)^2+\left(3x+2\right)^2-2.\left(2x-1\right).\left(3x+2\right)=\left[\left(2x-1\right)-\left(3x+2\right)\right]^2\)
\(=\left(2x-1-3x-2\right)^2=\left(-x-3\right)^2=\left(x+3^2\right)\)
a: \(x+\dfrac{3}{9}=\dfrac{7}{6}\cdot\dfrac{2}{3}\)
=>\(x+\dfrac{1}{3}=\dfrac{14}{18}=\dfrac{7}{9}\)
=>\(x=\dfrac{7}{9}-\dfrac{1}{3}=\dfrac{7}{9}-\dfrac{3}{9}=\dfrac{4}{9}\)
b: \(x-\dfrac{2}{3}=\dfrac{1}{8}:\dfrac{5}{4}\)
=>\(x-\dfrac{2}{3}=\dfrac{1}{8}\cdot\dfrac{4}{5}=\dfrac{1}{10}\)
=>\(x=\dfrac{1}{10}+\dfrac{2}{3}=\dfrac{3+20}{30}=\dfrac{23}{30}\)
a,
x+x×14÷27+x÷29=255�+�×14÷27+�÷29=255
⇒x+x×14×72+x×92=255⇒�+�×14×72+�×92=255
⇒x+x×78+x×92=255⇒�+�×78+�×92=255
⇒x.(1+78+92)=255⇒�.(1+78+92)=255
⇒x⋅518=255⇒�⋅518=255
⇒x=255÷518⇒�=255÷518
⇒x=255×851⇒�=255×851
⇒x=40⇒�=40
Vậy x = 40
Ta có :\(\left(2x-1\right)^2+\left(3x+2\right)^2-2\left(2x-1\right)\left(3x+2\right)\) \(=\left(3x+2-2x+1\right)^2\) \(=\left(x+3\right)^2\)
<=> x2 -4+3x2= 4x2+4x+1+2x
<=> 4x^2 - 4= 4x^2 +6x +1
<=> - 4=6x +1
<=> 6x= -5
<=> x= \(-\frac{5}{6}\)
\(\frac{4x}{1-x^2}=\sqrt{5}\) ĐKXĐ : x khác 1
\(\Rightarrow4x=\sqrt{5}\left(1-x^2\right)\)
\(\Leftrightarrow4x=\sqrt{5}-x^2\sqrt{5}\)
\(\Leftrightarrow x^2\sqrt{5}-4x-\sqrt{5}=0\)
\(\Leftrightarrow x^2\sqrt{5}-5x+x-\sqrt{5}=0\)
\(\Leftrightarrow x\sqrt{5}\left(x-\sqrt{5}\right)+\left(x-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{5}\right)\left(x\sqrt{5}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{5}=0\\x\sqrt{5}=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{5}\left(tmđk\right)\\x=-\frac{1}{\sqrt{5}}=-\frac{\sqrt{5}}{5}\left(tmđk\right)\end{cases}}}\)
\(4x=\sqrt{5}-\sqrt{5}x^2\)
\(\Rightarrow4x+\sqrt{5}x^2=\sqrt{5}\)
\(\Rightarrow x\left(4+\sqrt{5}x\right)=\sqrt{5}\)
\(\Rightarrow x.\sqrt{5}\left(\frac{4}{\sqrt{5}}+x\right)=\sqrt{5}\)
\(\Rightarrow x.\left(\frac{4}{\sqrt{5}}+x\right)=1\)
Với x = 1 \(\Rightarrow\frac{4}{\sqrt{5}}+x=1\Rightarrow x=1-\frac{4}{\sqrt{5}}=\frac{5-4\sqrt{5}}{5}\)
Với x = -1\(\Rightarrow\frac{4}{\sqrt{5}}+x=-1\Rightarrow x=-1-\frac{4}{\sqrt{5}}=-\frac{5+4\sqrt{5}}{5}\)
ko có x thỏa mãn
\(\left(x-\dfrac{2}{5}\right)^2-2=\dfrac{7}{9}\)
\(\left(x-\dfrac{2}{5}\right)^2=\dfrac{7}{9}+2\)
\(\left(x-\dfrac{2}{5}\right)^2=\dfrac{7}{9}+\dfrac{18}{9}\)
\(\left(x-\dfrac{2}{5}\right)^2=\dfrac{25}{9}\)
\(\left(x-\dfrac{2}{5}\right)^2=\left(\dfrac{5}{3}\right)^2\)
\(x-\dfrac{2}{5}=\dfrac{5}{3}\)
\(x=\dfrac{5}{3}+\dfrac{2}{5}\)
\(x=\dfrac{25}{15}+\dfrac{6}{15}\)
\(x=\dfrac{31}{15}\)
Vậy.....
(\(x-\dfrac{2}{5}\))2 - 2 = \(\dfrac{7}{9}\)
(\(x\) - \(\dfrac{2}{5}\))2 = \(\dfrac{7}{9}\) + 2
(\(x\) - \(\dfrac{2}{5}\))2 = \(\dfrac{25}{9}\)
(\(x-\dfrac{2}{5}\))2 = (\(\dfrac{5}{3}\))2
\(\left[{}\begin{matrix}x-\dfrac{2}{5}=\dfrac{5}{3}\\x-\dfrac{2}{5}=-\dfrac{5}{3}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{3}+\dfrac{2}{5}\\x=-\dfrac{5}{3}+\dfrac{2}{5}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{31}{15}\\x=-\dfrac{19}{15}\end{matrix}\right.\)
Vậy \(x\) \(\in\) {- \(\dfrac{19}{15}\); \(\dfrac{31}{15}\)}