-12/5 :(-6,5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\dfrac{\sqrt{13+2\sqrt{12}}-\sqrt{13-2\sqrt{12}}+2\sqrt{12}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{12}+1-\sqrt{12}+1+2\sqrt{12}}{\sqrt{2}}\)
\(=\dfrac{2\sqrt{12}+2}{\sqrt{2}}=2\sqrt{6}+\sqrt{2}\)
a)\(5,75.\frac{{ - 8}}{9} =\frac{{575}}{100}.\frac{{ - 8}}{9}= \frac{{23}}{4}.\frac{{ - 8}}{9} = \frac{{ - 46}}{9}\)
b)\(2\frac{3}{8}.\left( { - 0,4} \right) = \frac{{19}}{8}.\frac{{ - 4}}{10} =\frac{{19}}{8}.\frac{{ - 2}}{5} = \frac{{ - 19}}{{20}}\);
c)\(\frac{{ - 12}}{5}:\left( { - 6,5} \right) = \frac{{ - 12}}{5}:\frac{{ - 65}}{10} =\frac{{ - 12}}{5}:\frac{{ - 13}}{2} = \frac{{ - 12}}{5}.\frac{{ - 2}}{{13}} = \frac{{24}}{{65}}\).
Đặt \(A=\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}\)
<=> \(A^2=\left(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}\right)^2\)
<=> \(A^2=6,5+\sqrt{12}+2\sqrt{\left(6,5+\sqrt{12}\right)\left(6,5-\sqrt{12}\right)}+6,5-\sqrt{12}\)
<=> \(A^2=13+2\sqrt{42,25-12}\)
<=> \(A^2=13+2\sqrt{\frac{121}{4}}\)
<=> \(A^2=13+2\cdot\frac{11}{2}=13+11=24\)
=> \(A=2\sqrt{6}\)
Vậy \(\sqrt{6,5+\sqrt{12}}+\sqrt{6,5-\sqrt{12}}+2\sqrt{6}=4\sqrt{6}\)
c)
\(\sqrt{2}C=\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\)
\(=\sqrt{5}+1-\left(\sqrt{5}-1\right)-2=0\Rightarrow C=0\)
b)
\(B=3\left(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}\right)\)
\(\Rightarrow\sqrt{2}B=3\left(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\right)-\sqrt{5}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\right)\)
\(=3\left(\sqrt{5}+1+\sqrt{5}-1\right)-\sqrt{5}\left(\sqrt{5}+1-\sqrt{5}+1\right)\)
\(\sqrt{2}B=6\sqrt{5}-2\sqrt{5}=4\sqrt{5}\Rightarrow B=2\sqrt{10}\)
C)√3+√5−√3−√5−√2b) (3−√5)√3+√5+(3+√5)√3−√5d) √4−√7−√4+√7+√7e) √6,5+√12+√6,5−√12+2√6mình cần giải gấp ạ
Chu kì dao động: \(T=\dfrac{2\pi}{\omega}=\dfrac{2\pi}{\dfrac{12}{5}\pi}=\dfrac{5}{6}s\)
Có \(t=6,5s=7T+\dfrac{4}{5}T=7T+\Delta t\)
Mà \(\dfrac{4}{5}T=\dfrac{2}{3}T+\dfrac{2}{15}T\)
Như vậy quãng đường vật đi là:
\(S=7\cdot4A+2A+\dfrac{A}{2}+A.cos48^o\approx311,7cm\)
em xem lại đề bài nha, chị thấy đề bài cho không cụ thể
\(A=\dfrac{5.\left(38^2-17^2\right)}{8\left(47^2-19^2\right)}\\ =\dfrac{5\left(38-17\right)\left(38+17\right)}{8\left(47-19\right)\left(47+19\right)}\\ =\dfrac{5.21.55}{8.28.66}\\ =\dfrac{5.1155}{8.1848}\\ =\dfrac{5.5}{8.8}\\ =\dfrac{25}{64}\)
\(B=\sqrt{\dfrac{0,2\times1,21\times0,3}{7,5\times3,2\times0,64}}\\ =\sqrt{0,0625\times1,890625\times0,04}\\ =\sqrt{\dfrac{121}{25600}}\\ =\dfrac{11}{160}\)
\(A=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=2\left(16-15\right)=2\)
\(B=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(\left(3-\sqrt{5}\right)\left(\sqrt{5}+1\right)+\left(\sqrt{5}-1\right)\left(3+\sqrt{5}\right)\right)\)
\(=\frac{1}{\sqrt{2}}\left(2\sqrt{5}-2+2\sqrt{5}+2\right)=\frac{4\sqrt{5}}{\sqrt{2}}=2\sqrt{10}\)
\(C=\frac{1}{\sqrt{2}}\left(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}-2\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{5}+1-\sqrt{5}+1-2\right)=0\)
\(D=\frac{1}{\sqrt{2}}\left(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{7}-1-\sqrt{7}-1+\sqrt{14}\right)\)
\(=\frac{1}{\sqrt{2}}\left(-2+\sqrt{14}\right)=\sqrt{7}-\sqrt{2}\)
\(E=\frac{1}{\sqrt{2}}\left(\sqrt{13+2\sqrt{12}}+\sqrt{13-2\sqrt{12}}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{12}+1\right)^2}+\sqrt{\left(\sqrt{12}-1\right)^2}\right)+2\sqrt{6}\)
\(=\frac{1}{\sqrt{2}}\left(\sqrt{12}+1+\sqrt{12}-1\right)+2\sqrt{6}\)
\(=\sqrt{24}+2\sqrt{6}=4\sqrt{6}\)
\(\left|3,5\right|+\left|\frac{15}{12}\right|-\left|6,5\right|\)
\(=3,5+\frac{15}{12}-6,5\)
\(=-\frac{7}{4}\)
Chúc bạn học tốt
Ta có:
\(\left|3,5\right|+\left|\frac{15}{12}\right|-\left|6,5\right|\)
\(=3,5+\frac{15}{12}-6,5\)
\(=\frac{19}{4}-6,5\)
\(=-\frac{7}{4}\)
\(\dfrac{-12}{5}:\left(-6,5\right)=\dfrac{-12}{5}:\dfrac{-13}{2}=\dfrac{-12}{5}.\dfrac{-2}{13}=\dfrac{24}{65}\)
24/65