K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

1 tháng 8 2015

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3.\left(2-1\right)}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5\left(3-2\right)}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011\left(2006-2005\right)}\)

\(VT=\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{3}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{5}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{4011}\)

Nhận xét: (a-b)2 \(\ge\) 0 => a2 + b2  \(\ge\) 2ab

Áp dụng ta có: \(3=\left(\sqrt{2}\right)^2+\left(\sqrt{1}\right)^2\ge2.\sqrt{2}.\sqrt{1}\)

\(5=\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\ge2.\sqrt{3}.\sqrt{2}\)

...

\(4011=\left(\sqrt{2006}\right)^2+\left(\sqrt{2005}\right)^2\ge2.\sqrt{2006}.\sqrt{2005}\)

=> \(VT<\frac{2\left(\sqrt{2}-\sqrt{1}\right)}{2.\sqrt{2}.\sqrt{1}}+\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{2.\sqrt{3}.\sqrt{2}}+...+\frac{2\left(\sqrt{2006}-\sqrt{2005}\right)}{2.\sqrt{2006}.\sqrt{2005}}\)

=> \(VT<1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}...+\frac{1}{\sqrt{2005}}-\frac{1}{\sqrt{2006}}=1-\frac{1}{\sqrt{2006}}\)

=> điều phải chứng minh

 

5 tháng 10 2019

Đúng là câu b sai, nhầm dấu đoạn đầu, phải là \(\frac{2006.2006-\left(2005.2006+2005\right)}{2006.\left(2007-2005\right)}\)

Phá ngoặc thì thành trừ nhưng cô của em bạn lại sót=> sai luôn cả tính chất bài toán.

P/s: Thử lại bằng casio là thấy rõ bạn đúng.

9 tháng 10 2019

Tư tưởng bảo thủ của bọn trẻ con và niềm tin mù quáng vào thầy cô đó bạn ^^

5 tháng 9 2021

Đặt \(a=\sqrt{2006}-\sqrt{2005};b=\sqrt{2006}+\sqrt{2005}\)

Ta có 

\(a=\sqrt{2006}-\sqrt{2005}=\dfrac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\dfrac{1}{b}\)

\(\RightarrowĐfcm\)

14 tháng 8 2017

Ta có a+b+c=0\(\Rightarrow\)\(\left(a+b+c\right)^2=0\)\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)\(\Rightarrow a^2+b^2+c^2=0\).Mặt khác ta có :\(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)\(\Rightarrow a=b=c=0\)\(\Rightarrow\)\(M=\left(a-2005\right)^{2006}+\left(b-2005\right)^{2006}+\left(c-2005\right)^{2006}\)=\(\left(-2005\right)^{2006}+\left(-2005\right)^{2006}+\left(-2005\right)^{2006}\)=\(3.2005^{2006}\)

10 tháng 6 2017

\(\left(x-\sqrt{11}\right)^2=0\)

\(\left(x-\sqrt{11}\right)=0\)

\(x=\sqrt{11}\)

10 tháng 6 2017

\(\left(x-\sqrt{11}^2=0\right)\)

\(\left(x-\sqrt{11}\right)=0\)

\(x=\sqrt{11}\)

9 tháng 8 2016

Đặt \(a=\sqrt{2006}-\sqrt{2005}\) , \(b=\sqrt{2006}+\sqrt{2005}\)

Ta sẽ chứng minh \(a=\frac{1}{b}\)

Ta có : \(a=\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}=\frac{2006-2005}{\sqrt{2006}+\sqrt{2005}}\)

\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}=\frac{1}{b}\)

Vậy a và b là hai số nghịch đảo.

9 tháng 8 2016

Đầu tiên nhắc lại định nghĩ hai số nghịch đảo: Hai số được gọi là nghịch đảo nếu tích của chúng bằng 1.

Vd: $ab=1\implies $ a và b là hai số nghịch đảo của nhau và ngược lại nếu a và b  là hai số nghịch đảo của nhau thì $ab=1$.

Áp dụng vào bài toán trên ta có: $(\sqrt{2006}-\sqrt{2005})(\sqrt{2006}-\sqrt{2005})=1\implies $ hai số trên là nghịch đảo của nhau.