K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2021

Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)khi :

\(10x-13+4x-\left(4-x\right)\ne0\)

\(\Leftrightarrow10x-13+4x-4+x\ne0\)

\(\Leftrightarrow15x-17\ne0\)

\(\Leftrightarrow x\ne\frac{17}{15}\)

21 tháng 5 2021

Phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)xác đinhk khi 

\(\left(10x-13+4x\right)-\left(4-x\right)\ne0\)

\(\Leftrightarrow10x-13+4x-4+x\ne0\)

\(\Leftrightarrow15x-17\ne0\)

\(\Leftrightarrow15x\ne17\)

\(\Leftrightarrow x\ne\frac{17}{15}\)

Vậy phân thức \(\frac{7x+4}{\left(10x-13+4x\right)-\left(4-x\right)}\)được xác đinh khi \(x\ne\frac{17}{15}\)

5 tháng 7 2017

Cứ thay vào rùi thính thui

5 tháng 7 2017

Mấy bài kia phá tung tóe rồi rút gọn hết sức xong thay x vào, làm câu c thôi nhé:

c) \(C=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)

riêng câu này ta thay x = 9 vào luôn, vậy ta có:

\(C=9^{14}-10\cdot9^{13}+10\cdot9^{12}-10\cdot9^{11}+...+10\cdot9^2-10\cdot9+10\)

\(=9^{14}-\left(9+1\right)\cdot9^{13}+\left(9+1\right)\cdot9^{12}-\left(9+1\right)\cdot9^{11}+...+\left(9+1\right)\cdot9^2-\left(9+1\right)\cdot9+10\)

\(=9^{14}-9^{14}-9^{13}+9^{13}+9^{12}-9^{12}-9^{11}+...+9^3+9^2-9^2-9+10\)

\(=-9+10\)

\(=1\)

29 tháng 11 2017

a) \(\dfrac{4x-1}{3x^2y}-\dfrac{7x-1}{3x^2y}\)

\(=\dfrac{\left(4x-1\right)-\left(7x-1\right)}{3x^2y}\)

\(=\dfrac{4x-1-7x+1}{3x^2y}\)

\(=\dfrac{-3x}{3x^2y}\)

\(=\dfrac{-1}{xy}\)

b) \(\dfrac{4x+5}{2x-1}-\dfrac{5-9x}{2x-1}\)

\(=\dfrac{\left(4x+5\right)-\left(5-9x\right)}{2x-1}\)

\(=\dfrac{4x+5-5+9x}{2x-1}\)

\(=\dfrac{13x}{2x-1}\)

c) \(\dfrac{11x}{2x-3}-\dfrac{x-18}{3-2x}\)

\(=\dfrac{11x}{2x-3}+\dfrac{x-18}{2x-3}\)

\(=\dfrac{11x+\left(x-18\right)}{2x-3}\)

\(=\dfrac{11x+x-18}{2x-3}\)

\(=\dfrac{12x-18}{2x-3}\)

\(=\dfrac{6\left(2x-3\right)}{2x-3}\)

\(=\dfrac{6}{1}\)

\(=6\)

d) \(\dfrac{2x-7}{10x-4}-\dfrac{3x+5}{4-10x}\)

\(=\dfrac{2x-7}{10x-4}+\dfrac{3x+5}{10x-4}\)

\(=\dfrac{\left(2x-7\right)+\left(3x+5\right)}{10x-4}\)

\(=\dfrac{2x-7+3x+5}{10x-4}\)

\(=\dfrac{5x-2}{10x-4}\)

\(=\dfrac{5x-2}{2\left(5x-2\right)}\)

\(=\dfrac{1}{2}\)

21 tháng 4 2017

Giải bài 29 trang 50 Toán 8 Tập 1 | Giải bài tập Toán 8

20 tháng 10 2018

Đặt \(\hept{\begin{cases}x^2+3x-4=a\\3x^2+7x+4=b\end{cases}\Rightarrow4x^2+10x=a+b}\)

   \(\left(x^2+3x-4\right)^3+\left(3x^2+7x+4\right)^3=\left(4x^2+10x\right)^3\)

\(\Rightarrow a^3+b^3=\left(a+b\right)^3\)

\(\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Rightarrow3ab\left(a+b\right)=0\)

Nếu \(a=0\Rightarrow x^2+3x-4=0\Rightarrow x\left(x+4\right)-\left(x+4\right)=0\Rightarrow\left(x+4\right)\left(x-1\right)=0\Rightarrow\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)

Nếu \(b=0\Rightarrow3x^2+7x+4=0\Rightarrow3x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(3x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-\frac{4}{3}\end{cases}}\)

Nếu \(a+b=0\Rightarrow4x^2+10x=0\Rightarrow2x\left(2x+5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}\)

1 tháng 7 2021

a)

 ⇔ \(x^2-16=9\)

⇔ \(x^2=25\)

⇔ \(x=\pm5\)

b)

 ⇔ \(x^2-4x+4-25x^2+20x-4=0\)

⇔ \(16x-24x^2=0\)

⇔ \(8x\left(2-3x\right)=0\)

⇒ \(\left[{}\begin{matrix}x=0\\2-3x=0\end{matrix}\right.\)   ⇔   \(\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

Vậy \(x=0\) hoặc \(x=\dfrac{2}{3}\)

c)  

⇔ \(3x^2-10x-20=0\)

⇔ \(x^2-2.x.\dfrac{5}{3}+\dfrac{25}{9}-\dfrac{205}{9}=0\)

⇔ \(\left(x-\dfrac{5}{3}\right)^2=\dfrac{205}{9}\)

⇒ \(\left[{}\begin{matrix}x-\dfrac{5}{3}=\sqrt{\dfrac{205}{9}}\\x-\dfrac{5}{3}=-\sqrt{\dfrac{205}{9}}\end{matrix}\right.\)  ⇔ \(\left[{}\begin{matrix}x=\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\\x=-\dfrac{\sqrt{\text{205}}}{\text{3}}+\dfrac{5}{3}\end{matrix}\right.\)  ⇔ \(\left[{}\begin{matrix}x=\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\\\text{x}=-\dfrac{15+\text{9}\sqrt{\text{205}}}{\text{9}}\end{matrix}\right.\)

Vậy... 

d) 

⇔ \(\left(x^2+x\right)^2-49=\left(x^2+x\right)^2-7x\)

⇔ 7x = 49

⇔ x=7

Vậy...

a: \(\Leftrightarrow x^2\left(9x^2-4\right)=0\)

\(\Leftrightarrow x^2\left(3x-2\right)\left(3x+2\right)=0\)

hay \(x\in\left\{0;\dfrac{2}{3};-\dfrac{2}{3}\right\}\)

b: \(\Leftrightarrow2x^4-4x^2+3x^2-6=0\)

\(\Leftrightarrow x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

d: \(\Leftrightarrow x^4-9x^2+6x^2-54=0\)

\(\Leftrightarrow x^2-9=0\)

=>x=3 hoặc x=-3

23 tháng 9 2018

\(x^2-x-12\)

\(=x^2+3x-4x-12\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x+3\right)\left(x-4\right)\)

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)