K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

Đinh Tuấn Việt

11 tháng 11 2017

Goi d la UCLN(2n - 1,9n + 4), ta co:

2n - 1 chia het cho d => 18n - 9

9n + 4 chia het cho d => 18n + 8

=> (18n-9) - (18n+8) chia het cho d

=> (18n - 9 - 18n - 8) chia het cho d

=> 1 chia het cho d

=> d = 1 

Vay UCLN cua 2n - 1 va 9n + 4 la 1

2 tháng 11 2018

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17.

Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9  ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9     (k ∈ N )

- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.

     và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.

Do đó ƯCLN(2n - 2 ; 9n + 4) = 17

- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1

Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

6 tháng 8 2016

Gọi d = ƯCLN(2n - 1; 9n + 4) (d thuộc N*)

=> 2n - 1 chia hết cho d; 9n + 4 chia hết cho d

=> 9.(2n - 1) chia hết cho d; 2.(9n + 4) chia hết cho d

=> 18n - 9 chia hết cho d; 18n + 8 chia hết cho d

=> (18n + 8) - (18n - 9) chia hết cho d

=> 18n + 8 - 18n + 9 chia hết cho d

=> 17 chia hết cho d

\(d\in\)N* => \(d\in\left\{1;17\right\}\)

+ Với d = 17 thì 2n - 1 chia hết cho 17; 9n + 4 chia hết cho 17

=> 2n - 1 + 17 chia hết cho 17; 9n + 4 + 68 chia hết cho 17

=> 2n + 16 chia hết cho 17; 9n + 72 chia hết cho 17

=> 2.(n + 8) chia hết cho 17; 9.(n + 8) chia hết cho 17

Do (2;17)=1; (9;17)=1 => n + 8 chia hết cho 17

=> n = 17k + 9 (k thuộc N)

Vậy với \(n\ne17k+9\)(k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 1

Với n = 17k + 9 (k thuộc N) thì ƯCLN(2n - 1; 9n + 4) = 17

26 tháng 5 2015

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 

Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17.

Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9  ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9     (k ∈ N)

- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.

     và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.

Do đó ƯCLN(2n - 2 ; 9n + 4) = 17

- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1

                                         Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

26 tháng 5 2015

Gọi d ∈ ƯC (2n - 1, 9n + 4) ⇒ 2(9n + 4) - 9(2n - 1)  ⋮  d ⇒ (18n + 8) - (18n - 9) ⋮ 17 ⇒ 17  ⋮  d ⇒ d ∈ {1, 17}. 
Ta có 2n - 1  ⋮  17 ⇔  2n - 18  ⋮  17 ⇔ 2(n - 9)  ⋮  17.
Vì ƯCLN(2 ; 17) = 1 ⇒ n - 9  ⋮ 17 ⇔ n - 9 = 17k ⇔ n = 17k + 9     (k ∈ N)
- Nếu n = 17k + 9 thì 2n - 1 = 2 . (17k + 9) - 1 = 34k - 17 = 17 . (2k + 1)⋮ 17.
     và 9n + 4 = 9 . (17k + 9) + 4 = 153k + 85 = 17 . (9 + 5) ⋮ 17.
Do đó ƯCLN(2n - 2 ; 9n + 4) = 17
- Nếu n ≠ 17k + 9 thì 2n - 1 không chia hết cho 17, do đó ƯCLN(2n - 1 ; 9n + 4) = 1
                 Vậy ƯCLN(2n - 1 ; 9n + 4) = 17

12 tháng 8 2023

 Đặt \(ƯCLN\left(2n-1;9n+4\right)=d\)

\(\Rightarrow\left\{{}\begin{matrix}2n-1⋮d\\9n+4⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}18n-9⋮d\\18n+8⋮d\end{matrix}\right.\) \(\Rightarrow17⋮d\) \(\Rightarrow d\in\left\{1;17\right\}\)

 Như vậy, \(ƯCLN\left(2n-1;9n+4\right)\) có thể bằng 1, có thể bằng 17 (nhưng không thể mang giá trị khác 1 và 17). Chẳng hạn với \(n=9\) thì \(2.9-1=17\) và \(9.9+4=85\) và \(ƯCLN\left(17,85\right)=17\).

11 tháng 8 2023

\(UCLN\left(2n-1;9n+4\right)=1\)

Bạn cho \(n=1;2;3;4;...\) sẽ có kết quả như trên.

15 tháng 3 2018

mau lên nha mình đang gấp

22 tháng 3 2018

Đặt \(A=\frac{9n-4}{2n-7}=\frac{9n-\frac{63}{2}+\frac{33}{2}}{2n-7}=\frac{\frac{9}{2}\left(2n-7\right)+\frac{33}{2}}{2n-7}=\frac{9}{2}+\frac{\frac{55}{2}}{2n-7}\)

Để A có GTLN 

\(\Leftrightarrow\frac{\frac{55}{2}}{2n-7}\)có GTLN

\(\Leftrightarrow2n-7\)có GTNN, 2n-7 lớn hơn 0 và n thuộc Z

\(\Leftrightarrow2n-7=1\)

\(\Leftrightarrow2n=8\)

\(\Leftrightarrow n=4\)

Vậy, A có GTLN là 32 khi x=4

3 tháng 12 2018

ƯC 1

ƯCLN =1

21 tháng 11 2022

a: Gọi d=ƯCLN(2n+1;3n+1)

=>6n+3-6n-2 chia hết cho d

=>1 chia hết cho d

=>d=1

=>ƯC(2n+1;3n+1)={1;-1}

b:

Sửa đề: tìm ƯCLN(9n+4;2n+1)

Gọi d=ƯCLN(9n+4;2n+1)

=>18n+8-18n-9 chia hết cho d

=>-1 chia hết cho d

=>d=1

=>ƯCLN(9n+4;2n+1)=1

17 tháng 3 2020

a) 7n + 13 và 2n + 4

ƯC (7n + 13 ; 2n + 4) = d

\(\Rightarrow\left[{}\begin{matrix}\text{ 7n + 13 ⋮ d}\\\text{2n + 4 ⋮ d}\end{matrix}\right.\)

⇒ 7(2n + 4) - 2(7n + 13) ⋮ d

⇒ 2 ⋮ d

d = 1; 2

Xét thấy 7n + 13 không chia hết cho 2 ⇒ d = 1

Để 7n + 13 và 2n + 4 là hai số sau nguyên tố cùng nhau

Thì 7n + 13 là lẻ ⇒ 7n chẵn ⇒ n chẵn

➤ Vậy n chẵn thì hai số đó là hai số nguyên tố cùng nhau

b) 9n + 24 và 3n + 4

\(\Rightarrow\left[{}\begin{matrix}\text{9n + 24 ⋮ d }\\\text{3n + 4 ⋮ d }\end{matrix}\right.\)

⇒ 9n + 24 - 3(3n + 4) ⋮ d

⇒ 12 ⋮ d

d = 1; 2; 3; 4; 6; 12

3n + 4 không chia hết cho 3; 4; 6; 12 ⇒ d = 1; 2

Để 9n + 24 và 3n + 4 là hai số sau nguyên tố cùng nhau

Thì 9n + 24 là lẻ ⇒ 9n lẻ ⇒ lẻ

➤ Vậy n lẻ thì hai số đó là hai số nguyên tố cùng nhau

c) 18n + 3 và 21n + 7

\(\Rightarrow\left[{}\begin{matrix}\text{18n + 3 ⋮ d}\\\text{21n + 7 ⋮ d }\end{matrix}\right.\)

⇒ 6(21 + 7) - 7(18 + 3) ⋮ d

⇒ 21 ⋮ d

d = 3; 7

18n + 3 không chia hết cho 3 ⇒ d = 7

Để 18n + 3 và 21n + 7 là hai số sau nguyên tố cùng nhau

Thì n = 7k - 1 (k ∈ N)

➤ Vậy n = 7k - 1 (k ∈ N) thì hai số đó là hai số nguyên tố cùng nhau