3 ( x - 2 ) = 111
Cứu mình vs=((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)-17/23=-171717/232323
b)-265/317<-83/111
c)2002/2003<14/13
d)-27/463<1/3
Lời giải:
$A=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(109+110-111-112)+113$
$=(-4)+(-4)+(-4)+....+(-4)+113$
Số lần xuất hiện của -4 là: $[(112-1):1+1]:4=28$
$A=(-4).28+113=1$
\(1,2:x+2,3:x=5\)
\(\left(1,2+2,3\right):x=5\)
\(3,5:x=5\)
\(x=3,5:5=0,7\)
\(P=\left(x^2+4xy+4y^2\right)+\left(y^2+8y+16\right)+16\\ P=\left(x+2y\right)^2+\left(y+4\right)^2+16\ge16\\ P_{min}=16\Leftrightarrow\left\{{}\begin{matrix}x=-2y=8\\y=-4\end{matrix}\right.\)
Bài 1
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2
\(\dfrac{111}{333}=\dfrac{111:111}{333:111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222:2222}{4444:2222}=\dfrac{1}{2}\)
Do \(3>2\Rightarrow\dfrac{1}{3}< \dfrac{1}{2}\)
Vậy \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
Bài 1.
\(\left(1-\dfrac{1}{99}\right)\times\left(1-\dfrac{1}{100}\right)\times...\times\left(1-\dfrac{1}{2006}\right)\)
\(=\dfrac{98}{99}\times\dfrac{99}{100}\times...\times\dfrac{2005}{2006}\)
\(=\dfrac{98\times99\times...\times2005}{99\times100\times...2006}\)
\(=\dfrac{98}{2006}\)
\(=\dfrac{49}{1003}\)
Bài 2.
Có: \(\dfrac{111}{333}=\dfrac{111}{3\times111}=\dfrac{1}{3}\)
\(\dfrac{2222}{4444}=\dfrac{2222}{2\times2222}=\dfrac{1}{2}\)
Vì \(\dfrac{1}{3}< \dfrac{1}{2}\) nên \(\dfrac{111}{333}< \dfrac{2222}{4444}\)
\(1+3+5+...+\left(2x+1\right)=2601\)
số số hạng: \(\left[\left(2x+1\right)-1\right]:2+1=x+1\)
tổng: \(\left(2x+1\right)+1:2x\left(x+1\right)=\left(x+1\right)^2\)
\(\left(x+1\right)^2=2601\)
\(\Rightarrow\orbr{\begin{cases}x+1=51\\x+1=-51\end{cases}\Rightarrow\orbr{\begin{cases}x=50\\x=-52\end{cases}}}\)
\(2\cdot\left(x-1\right)+3\cdot\left(x-2\right)=0\\ \Rightarrow2x-2+3x-6=0\\ \Rightarrow5x-8=0\\ \Rightarrow5x=0+8\\ \Rightarrow5x=8\\ \Rightarrow x=\dfrac{8}{5}\)
Lời giải:
a. $(x-2)^3+(x+2)^3-6x(x+2)(x-2)$
$=x^3-6x^2+12x-8+(x^3+6x^2+12x+8)-6x(x^2-4)$
$=2x^3+24x-6x^3+24x=-4x^3+48x$
b.
$(2x-y)^3+(2x+y)^3$
$=8x^3-12x^2y+6xy^2-y^3+8x^3+12x^2y+6xy^2+y^3$
$=16x^3+12xy^2$
c.
$(x-2)(x+2)-(x^2+2x+4)(x-2)$
$=(x^2-4)-(x^3-2^3)=x^2-4-x^3+8=x^2-x^3+4$
3(x - 2) = 111
x - 2 = 111 : 3
x - 2 = 37
x = 37 + 2
x = 39
\(3\left(x-2\right)=111\)
\(x-2=111:3\)
\(x-2=37\)
\(x=37+2\)
\(x=39\)
Vậy x = 39