chứng tỏ 1!+2!+3!+4!+...+100! là hợp số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
< \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Ta có:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(1-\frac{1}{100}\)
=\(\frac{99}{100}\)
=>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) không phải số tự nhiên
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)không phải số tự nhiên
a) Gọi ƯCLN(12n+1,30n+2) là d
12n+1⋮d ⇒ 60n+5⋮d
30n+2⋮d ⇒ 60n+4⋮d
(60n+5)-(60n+4)⋮d
1⋮d
Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản
b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
a=15! chia hết cho 2
Nên a+2 chia hết cho 2 mà a+2>2 nên a có nhiều hơn 2 ước và là hợp số
a=15! chia hết cho 3
nên a+3 chia hết cho 3 mà a+3>3 nên a+3 có nhiều hơn 2 ước và là hợp số
......
a=15! chia hết cho 15
a+15 chia hết cho 15 nên a+15 là hợp số
b) Tương tự phần a
c có
Đặt c=2016!
c+2;c+3;c+4;..............;c+2016 là hợp số
mà dãy trên là 2015 số liên tiếp
Vậy tồn tại 2015 số liên tiếp là hợp số
a. Gọi \(d=ƯCLN\left(12n+1,30n+2\right)\)
\(\Rightarrow12n+1⋮d\)
\(30n+2⋮d\)
\(\Rightarrow5\cdot\left(12n+1\right)-2\cdot\left(30n+2\right)⋮d\)
\(\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow d=1\)
Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản .
b.\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)
bó tay @@@
Nếu a chia hết thì cách giải là a chia hết 1.2.....50 suy ra a chia hết cho 2,cho 3,.....,cho 50
suy ra a+2 là hợp số a chia hết 2,2chia hết cho 2
a+3 là hợp số a chia hết cho 3, 3 chia hết cho 3
.....................................................................
a+ 50 là hợp số a chia hết cho 50 , 50 chia hết cho 50
1)
+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)
+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)
+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2
Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3
=>p+8 là hợp số (trái với giả thiết )
Vậy p phải có dạng là 3k+2
Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3
=>p+4 là hợp số (đpcm)
a)
nếu p chia 6 dư 0 thì p=6k;p là hợp số
nếu p chia 6 dư 1 thì p=6k+1
nếu p chia 6 dư 2 thì p=6k+2,p là hợp số
nếu p chia 6 dư 3 thì p=6k+3,p là hợp số
nếu p chia 6 dư 4 thì p=6k+4,p là hợp số
nếu p chia 6 dư 5 thì p=6k+5
vậy mọi số nguyên t61 >3 chia 6 thì dư 1;dư 5 tức p=6k+1 và p=6k+5
dồ đời