K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2017

dồ đời

13 tháng 5 2015

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

Ta có:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

=>\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\) không phải số tự nhiên

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)không phải số tự nhiên

 

27 tháng 7 2021

a) Gọi ƯCLN(12n+1,30n+2) là d

12n+1⋮d  ⇒ 60n+5⋮d 

30n+2⋮d  ⇒ 60n+4⋮d 

(60n+5)-(60n+4)⋮d 

1⋮d 

Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản

27 tháng 7 2021

b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)

Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)

\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}\)

\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)

24 tháng 10 2015

a=15! chia hết cho 2 

Nên a+2 chia hết cho 2 mà a+2>2 nên a có nhiều hơn 2 ước và là hợp số

a=15! chia hết cho 3

nên a+3 chia hết cho 3 mà a+3>3 nên a+3 có nhiều hơn 2 ước và là hợp số

......

a=15! chia hết cho 15 

a+15 chia hết cho 15 nên a+15 là hợp số

b) Tương tự phần a

c có

Đặt c=2016!

c+2;c+3;c+4;..............;c+2016 là hợp số

mà dãy trên là 2015 số liên tiếp

Vậy tồn tại 2015 số liên tiếp là hợp số

a. Gọi \(d=ƯCLN\left(12n+1,30n+2\right)\)

 \(\Rightarrow12n+1⋮d\)

      \(30n+2⋮d\)

 \(\Rightarrow5\cdot\left(12n+1\right)-2\cdot\left(30n+2\right)⋮d\)

     \(\left(60n+5\right)-\left(60n+4\right)⋮d\)

      \(60n+5-60n-4⋮d\)

     \(\Rightarrow1⋮d\Rightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\Rightarrow d=1\)

Vậy \(\frac{12n+1}{30n+2}\)là phân số tối giản .

b.\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(=\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+...+\frac{1}{100\cdot100}\)

bó tay @@@

24 tháng 7 2017

Nếu a chia hết thì cách giải là a chia hết 1.2.....50 suy ra a chia hết cho 2,cho 3,.....,cho 50

suy ra a+2 là hợp số a chia hết 2,2chia hết cho 2

           a+3 là hợp số a chia hết cho 3, 3 chia hết cho 3

            .....................................................................

            a+ 50 là hợp số a chia hết cho 50 , 50 chia hết cho 50

25 tháng 7 2017

Giải giúp mình nhé !!!!!!!!!!!!!

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

30 tháng 10 2015

a)

nếu p chia 6 dư 0 thì p=6k;p là hợp số

nếu p chia 6 dư 1 thì p=6k+1

nếu p chia 6 dư 2 thì p=6k+2,p là hợp số

nếu p chia 6 dư 3 thì p=6k+3,p là hợp số

nếu p chia 6 dư 4 thì p=6k+4,p là hợp số

nếu p chia 6 dư 5 thì p=6k+5

vậy mọi số nguyên t61 >3 chia 6 thì dư 1;dư 5 tức p=6k+1 và p=6k+5